Upon release from infected cells, immature retroviruses undergo a maturation process in which Gag is cleaved by the viral protease into MA, CA, and NC, triggering large morphological changes and producing infectious virions. Within the mature virion, MA remains associated with the viral envelope, while CA assembles as a fullerene cone with ~250 CA hexamers and 12 CA pentamers, which encloses the RNA genome complexed with NC. In the last funding cycle we determined a 9-? resolution cryoEM density map of full-length HIV-1 CA by electron crystallography of 2D crystals. Docking of high- resolution structures of the N-terminal domain (NTD) and C-terminal domain (CTD) yielded a molecular model that guided the insertion of disulfide bonds that stabilized the NTD hexamer. Further mutagenesis destabilized the CTD dimers that link adjacent hexamers, thereby enabling solubilization and 3D crystallization. The resulting atomic- resolution X-ray structures revealed that the CA hexamer is composed of a relatively rigid inner ring of NTD subunits, surrounded by a mobile belt of CTD subunits. Mobility of the CTD belt is likely to be an underlying mechanism for generating the continuously curved capsid lattice in the fullerene cone. The same disulfide strategy was then used to generate stable CA pentamers, and we are completing the first high-resolution X-ray structure. For the next funding cycle we will pursue 2 specific aims: (1) We will devote 50% effort to continue our structural studies of the mature capsid lattice. In addition to completing X-ray structures of the pentamer, we will determine subnanometer cryoEM reconstructions of CA tubes with variable diameters. With high-resolution structures of the hexamer and pentamer, and guided by the hexamer interactions in the CA tubes, we will use computational methods to build an atomic model for the conical capsid. (2) We will devote 50% effort to structural studies of the immature Gag lattice. We have generated Gag mutants that display helical diffraction and serve as an in vitro mimic of the immature lattice. By analogy with our studies of the mature lattice, cryoEM and molecular docking will yield a model that will guide the engineering of soluble Gag hexamers for cryoEM and X-ray crystallographic studies. We are hopeful that our structural studies will continue to provide insight into principles of retrovirus assembly that will be important for the design of new therapeutic strategies.

Public Health Relevance

It is estimated that there are ~35 million people living with HIV/AIDS worldwide. Although HIV-1, the causative agent of AIDS, has been extensively studied, many stages of its replication cycle remain to be explored. We are using biophysical methods such as electron microscopy and X-ray crystallography to gain insight into the molecular architecture of the immature and mature particle forms of HIV-1. Such detailed molecular descriptions may provide insight that will provide clues for new therapeutic approaches.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM066087-10
Application #
8142303
Study Section
AIDS Molecular and Cellular Biology Study Section (AMCB)
Program Officer
Sakalian, Michael
Project Start
2003-05-01
Project End
2015-04-30
Budget Start
2011-06-01
Budget End
2012-04-30
Support Year
10
Fiscal Year
2011
Total Cost
$402,750
Indirect Cost
Name
University of Virginia
Department
Physiology
Type
Schools of Medicine
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Wagner, Jonathan M; Zadrozny, Kaneil K; Chrustowicz, Jakub et al. (2016) Crystal structure of an HIV assembly and maturation switch. Elife 5:
Bayro, Marvin J; Ganser-Pornillos, Barbie K; Zadrozny, Kaneil K et al. (2016) Helical Conformation in the CA-SP1 Junction of the Immature HIV-1 Lattice Determined from Solid-State NMR of Virus-like Particles. J Am Chem Soc 138:12029-32
Toh, Yukimatsu; Harper, Justin; Dryden, Kelly A et al. (2016) Crystal Structure of the Human Astrovirus Capsid Protein. J Virol 90:9008-17
Grime, John M A; Dama, James F; Ganser-Pornillos, Barbie K et al. (2016) Coarse-grained simulation reveals key features of HIV-1 capsid self-assembly. Nat Commun 7:11568
Li, Yen-Li; Chandrasekaran, Viswanathan; Carter, Stephen D et al. (2016) Primate TRIM5 proteins form hexagonal nets on HIV-1 capsids. Elife 5:
Domanska, Marta K; Dunning, Rebecca A; Dryden, Kelly A et al. (2015) Hemagglutinin Spatial Distribution Shifts in Response to Cholesterol in the Influenza Viral Envelope. Biophys J 109:1917-24
Gres, Anna T; Kirby, Karen A; KewalRamani, Vineet N et al. (2015) STRUCTURAL VIROLOGY. X-ray crystal structures of native HIV-1 capsid protein reveal conformational variability. Science 349:99-103
Purdy, Michael D; Bennett, Brad C; McIntire, William E et al. (2014) Function and dynamics of macromolecular complexes explored by integrative structural and computational biology. Curr Opin Struct Biol 27:138-48
Bhattacharya, Akash; Alam, Steven L; Fricke, Thomas et al. (2014) Structural basis of HIV-1 capsid recognition by PF74 and CPSF6. Proc Natl Acad Sci U S A 111:18625-30
Yeager, Mark; Dryden, Kelly A; Ganser-Pornillos, Barbie K (2013) Lipid monolayer and sparse matrix screening for growing two-dimensional crystals for electron crystallography: methods and examples. Methods Mol Biol 955:527-37

Showing the most recent 10 out of 36 publications