Due to the unusual functional hemizygosity of the resident genes, imprinted regions have been linked to several different kinds of human genetic defects, ranging from neurological defects to cancer. We have characterized one imprinted domain located in human chromosome 19q13.4 (HSA19q13.4), and this interval is also associated with imprinting related genetic disorders in human and mouse. This domain contains at least 6 imprinted genes, including Peg3, Usp29, Zim3/Usp29-as, Zim1, Zim2, and Zfp264. As in other imprinted domains gene clustering is thought to reflect the presence of long-range controlling mechanism(s). The long-term goal of this work is to understand how the imprinted expression of each gene within this domain is regulated; the proposed project is focused specifically on the regulation of two paternally expressed conserved genes, Peg3 and Usp29. Comparative genomic studies allowed us to identify one differentially methylated region that we believe may serve as an Imprinting Control Region (ICR) for this interval. This potential ICR overlaps with the promoter region of Peg3 and Usp29, termed P1-DMR (Promoter 1-Differentially Methylated Region). We have also identified an evolutionarily conserved Gli-type zinc-finger gene YY1 as a methylation-sensitive trans factor for P1-DMR. We predict that P1-DMR/YY1 may function either as a methylation sensitive chromosomal insulator or neural enhancer for the imprinting control of the neighboring genes. To investigate the potential function of P1-DMR for imprinting control, we will analyze the insulator and promoter activity observed from P1-DMR using several cell-line based assay systems. Mutant mice carrying targeted deletions of P1-DMR will be generated to test the in vivo function of P1-DMR, and the potential roles of YY1 in the P1-DMR function will also be investigated using transgenic mice inheriting various reporter constructs. These results will provide new insights into the regulation of this imprinted region, and explore the possible role of YY1 as a trans factor for mammalian genomic imprinting. These studies will provide new clues to imprinting-related phenotypes linked to this domain in human and mouse. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
1R01GM066225-01A2
Application #
6727446
Study Section
Mammalian Genetics Study Section (MGN)
Program Officer
Carter, Anthony D
Project Start
2004-02-01
Project End
2004-07-31
Budget Start
2004-02-01
Budget End
2004-07-31
Support Year
1
Fiscal Year
2004
Total Cost
$82,749
Indirect Cost
Name
Lawrence Livermore National Laboratory
Department
Biology
Type
Organized Research Units
DUNS #
827171463
City
Livermore
State
CA
Country
United States
Zip Code
94550
Kim, Joomyeong (2018) Evolution patterns of Peg3 and H19-ICR. Genomics :
Bakshi, Arundhati; Bretz, Corey L; Cain, Terri L et al. (2018) Intergenic and intronic DNA hypomethylated regions as putative regulators of imprinted domains. Epigenomics 10:445-461
Bretz, Corey L; Langohr, Ingeborg M; Kim, Joomyeong (2017) Epigenetic response of imprinted domains during carcinogenesis. Clin Epigenetics 9:90
Ye, An; Kim, Hana; Kim, Joomyeong (2017) PEG3 control on the mammalian MSL complex. PLoS One 12:e0178363
He, Hongzhi; Ye, An; Perera, Bambarendage P U et al. (2017) YY1's role in the Peg3 imprinted domain. Sci Rep 7:6427
Bretz, Corey L; Kim, Joomyeong (2017) Transcription-driven DNA methylation setting on the mouse Peg3 locus. Epigenetics 12:945-952
He, Hongzhi; Perera, Bambarendage P U; Ye, An et al. (2016) Parental and sexual conflicts over the Peg3 imprinted domain. Sci Rep 6:38136
Perera, Bambarendage P U; Kim, Joomyeong (2016) Sex and Tissue Specificity of Peg3 Promoters. PLoS One 11:e0164158
Perera, Bambarendage P U; Kim, Joomyeong (2016) Next-generation sequencing-based 5' rapid amplification of cDNA ends for alternative promoters. Anal Biochem 494:82-4
Perera, Bambarendage P U; Kim, Joomyeong (2016) Alternative promoters of Peg3 with maternal specificity. Sci Rep 6:24438

Showing the most recent 10 out of 61 publications