The murein sacculus is a mesh of cross-linked peptidoglycan strands that confers rigidity to the bacterial cell wall. Beta-lactam antibiotics, which target the essential transpeptidases (penicillin-binding proteins or PBPs) that cross-link the peptidoglycan strands, are important compounds in the treatment of bacterial diseases. Unfortunately, the emergence of multiple mechanisms of antibiotic resistance threatens to make these and other antibiotics obsolete in the treatment of bacterial infections. Along with other pathogenic bacteria, antibiotic resistance in Neisseria gonorrhoeae is a growing problem. Penicillin and tetracycline, once the antibiotics of choice for treatment of gonococcal infections, are no longer be used due to the emergence of resistant strains. Moreover, increasing numbers of strains are now resistant to the fluoroquinolones, one of the two antibiotics current recommended in the treatment of gonorrhea. Clearly there is an urgent need to develop new antimicrobials directed both against well-known molecular targets, such as PBPs, but also against novel targets. In this proposal we describe structural and biochemical studies of three enzymes involved in peptidoglycan metabolism: a D-D-carboxypeptidase from E. coli (PBP 5) that serves as a model system for elucidating PBP function, an essential transpeptidase (PBP 2) from N. gonorrhoeae that is the lethal target of current beta-lactam antibiotics, and a lytic transglycosylase, MltA, also from N. gonorrhoeae, that serves as the lynchpin of the cell wall synthesizing complex. Each of these proteins has been selected to address one or more of the following aims: (a) to understand the biology of peptidoglycan synthesis, (b) to explore their interactions with antibiotics, (c) to elucidate the molecular basis for antibiotic resistance and (d) to examine their potential as targets for drug development. Studies on PBP 5 will elucidate the mechanism by which this enzyme hydrolyzes substrate and will provide a better understanding of PBP-antibiotic interactions in general. The molecular basis for antibiotic resistance in PBP 2 will be investigated by structural studies of the native enzyme and of a mutant isolated from a penicillin-resistant strain. The role of MltA as part of a multienzyme complex mediating peptidoglycan synthesis as well as its suitability as a novel target for antimicrobials will be examined by solving its crystal structure. These studies will provide a framework for future studies aimed at structure-based drug design and will provide substantial insight into the mechanisms of peptidoglycan synthesis. ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM066861-04
Application #
7012727
Study Section
Bacteriology and Mycology Subcommittee 2 (BM)
Program Officer
Marino, Pamela
Project Start
2003-02-01
Project End
2007-01-31
Budget Start
2006-02-01
Budget End
2007-01-31
Support Year
4
Fiscal Year
2006
Total Cost
$187,122
Indirect Cost
Name
Medical University of South Carolina
Department
Biochemistry
Type
Schools of Medicine
DUNS #
183710748
City
Charleston
State
SC
Country
United States
Zip Code
29425
Young, Brandon F; Roth, Braden M; Davies, Christopher (2018) 1H, 13C, and 15N resonance assignments of N-acetylmuramyl-L-alanine amidase (AmiC) N-terminal domain (NTD) from Neisseria gonorrhoeae. Biomol NMR Assign :
Zhu, Weiyan; Tomberg, Joshua; Knilans, Kayla J et al. (2018) Properly folded and functional PorB from Neisseria gonorrhoeae inhibits dendritic cell stimulation of CD4+ T cell proliferation. J Biol Chem 293:11218-11229
Wu, Qinglin; Fenton, Benjamin A; Wojtaszek, Jessica L et al. (2017) Probing the excited-state chemical shifts and exchange parameters by nitrogen-decoupled amide proton chemical exchange saturation transfer (HNdec-CEST). Chem Commun (Camb) 53:8541-8544
Tomberg, Joshua; Fedarovich, Alena; Vincent, Leah R et al. (2017) Alanine 501 Mutations in Penicillin-Binding Protein 2 from Neisseria gonorrhoeae: Structure, Mechanism, and Effects on Cephalosporin Resistance and Biological Fitness. Biochemistry 56:1140-1150
Nemmara, Venkatesh V; Nicholas, Robert A; Pratt, R F (2016) Synthesis and Kinetic Analysis of Two Conformationally Restricted Peptide Substrates of Escherichia coli Penicillin-Binding Protein 5. Biochemistry 55:4065-76
Lenz, Jonathan D; Stohl, Elizabeth A; Robertson, Rosanna M et al. (2016) Amidase Activity of AmiC Controls Cell Separation and Stem Peptide Release and Is Enhanced by NlpD in Neisseria gonorrhoeae. J Biol Chem 291:10916-33
Alawieh, Ali; Sabra, Zahraa; Bizri, Abdul Rahman et al. (2015) A computational model to monitor and predict trends in bacterial resistance. J Glob Antimicrob Resist 3:174-183
Fedarovich, Alena; Cook, Edward; Tomberg, Joshua et al. (2014) Structural effect of the Asp345a insertion in penicillin-binding protein 2 from penicillin-resistant strains of Neisseria gonorrhoeae. Biochemistry 53:7596-603
Tomberg, Joshua; Unemo, Magnus; Ohnishi, Makoto et al. (2013) Identification of amino acids conferring high-level resistance to expanded-spectrum cephalosporins in the penA gene from Neisseria gonorrhoeae strain H041. Antimicrob Agents Chemother 57:3029-36
Fedarovich, Alena; Djordjevic, Kevin A; Swanson, Shauna M et al. (2012) High-throughput screening for novel inhibitors of Neisseria gonorrhoeae penicillin-binding protein 2. PLoS One 7:e44918

Showing the most recent 10 out of 25 publications