We have begun a systematic investigation of all chromatin modifications associated with myogenic differentiation using a combination of ChIP-sequencing (ChIP-seq) and expression profiling. Here, we propose the following aims to further dissect the mechanisms underlying pocket protein involvement in cell cycle exit and differentiation. In our first Aim, we will examine gene regulation during myogenic differentiation by specifically focusing on the role of histone H2B ubiquitylation (H2BUb) during differentiation. We will examine the extent of histone cross-talk in myotubes and investigate the impact of ablating RNF20, the enzyme responsible for H2B ubiquitylation, on differentiation. Remarkably, we have found that H2BUb essentially disappears during differentiation, and therefore we will examine the underlying mechanistic basis for myotubespecific loss of H2Bub. In our second Aim, we will examine the genome-wide role of pRB and co-repressors in directing chromatin modifications. We will first perform ChIP-seq on pRB and p130 in differentiated myotubes, enabling us to identify regions bound by these factors. We will also perform expression profiling after removal of pRB or p130 from myotubes. By merging these data, we will determine how chromatin modifications and gene expression are affected by loss of pocket proteins. Using our extensive ChIPseq data as a guide, we will test the hypothesis that pRB directs tri-methylation of H3K27 (H3K27me3) and ask whether Polycomb repressive complex (PRC2) is involved and to what extent. We will examine whether Ezh2 or an alternative histone methyltransferase (HMT), such as Ezh1, may be involved in H3K27me3 deposition. We will determine whether pRB influences the recruitment of either or both HMTs. The acquisition of our extensive ChIP-seq dataset allows us an unprecedented ability to examine on a genome-wide scale the relationship between pRB binding, chromatin modifications, and gene expression in a developmentally relevant setting, thereby enhancing our understanding of regulatory controls that are essential for both reversible and permanent gene silencing, withdrawal from the cell cycle, and muscle differentiation. Progress on both Aims was impacted by Hurricane Sandy. Funds are requested to continue the Aims listed above.
Differentiation is coupled to exit from the cell cycle, and the retinoblastoma (pRB) tumor suppressor plays pivotal roles in controlling growth arrest and differentiation. pRB and associated proteins regulate these processes in part by directing chromatin modifications. We request funds to extend work under the parent proposal, delayed by Hurricane Sandy, in which we seek to understand the underlying pRB-dependent and pRB-independent mechanisms that drive chromatin modifications, regulate gene expression, and thereby control the decision to permanently stop dividing and to terminally differentiate.
Showing the most recent 10 out of 21 publications