The long-term objective of this project is to determine in molecular detail the energetic-structure-function relationship in exchangeable apolipoproteins and lipoproteins, thereby providing an insight into molecular mechanisms of lipoprotein action in the pathogenesis of atherosclerosis and other Upoprotein-related diseases. Exchangeable apolipoproteins are soluble protein components of lipoproteins that mediate lipid and cholesterol transport and metabolism and play crucial roles in the pathogenesis of atherosclerosis, coronary heart disease, stroke and other major human disorders. Structural stability and compositional variability of lipoproteins are essential for their functions, and have to be understood in detail in order to elucidate molecular mechanisms of lipoprotein action in normal and in diseased states. The proposed work addresses this long-term goal through detailed studies of the energetics, structure and lipid binding function of two small human plasma apolipoproteins, apoC-1 and apoA-2. ApoC-1 delays the clearance of potentially atherogenic triglyceride-rich particles by inhibiting their uptake via the apoE-mediated low-density lipoprotein receptor-related pathway. The ability of apoC-1 to activate lecitin:cholesterol acyltransferase (LCAT) may account for normal plasma levels of cholesterol esters in subjects with deficiency of the major LCAT activator, apoA-1. ApoA-2 ability to displace apoA-1 from high-density lipoproteins (HDL) affects the antiatherogenic functions of HDL. Energetic and structural analyses of lipid-free and lipid-bound human apoA-2, apoC-1 and a series of apoC-1 mutants targeted towards key structural regions will be carried out by using a combination of far- and near-UV circular dichroism and fluorescence spectroscopy, electron microscopy, differential scanning calorimetry, and x-ray diffraction methods. Such analysis will determine, at the level of individual amino acids, the roles of key structural elements in apoC-1 for its folding, stability and lipid binding properties; identify critical determinants for the Lp stability and their relation to the kinetics of apolipoprotein transfer among lipoproteins in the course of lipoprotein metabolism; crystallize apoC-1 and analyze its crystal structure that may provide a model for a functional apolipoprotein conformation. The results will provide the energetic and structural basis for understanding molecular mechanisms of lipoprotein action in normal and diseased states.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
3R01GM067260-08S1
Application #
7413796
Study Section
Biophysical Chemistry Study Section (BBCB)
Program Officer
Basavappa, Ravi
Project Start
1998-12-15
Project End
2008-05-31
Budget Start
2005-12-01
Budget End
2008-05-31
Support Year
8
Fiscal Year
2007
Total Cost
$94,151
Indirect Cost
Name
Boston University
Department
Physiology
Type
Schools of Medicine
DUNS #
604483045
City
Boston
State
MA
Country
United States
Zip Code
02118
Wilson, Christopher J; Das, Madhurima; Jayaraman, Shobini et al. (2018) Effects of Disease-Causing Mutations on the Conformation of Human Apolipoprotein A-I in Model Lipoproteins. Biochemistry 57:4583-4596
Klimtchuk, Elena S; Prokaeva, Tatiana; Frame, Nicholas M et al. (2018) Unusual duplication mutation in a surface loop of human transthyretin leads to an aggressive drug-resistant amyloid disease. Proc Natl Acad Sci U S A 115:E6428-E6436
Jayaraman, Shobini; Gantz, Donald L; Haupt, Christian et al. (2018) Serum amyloid A sequesters diverse phospholipids and their hydrolytic products, hampering fibril formation and proteolysis in a lipid-dependent manner. Chem Commun (Camb) 54:3532-3535
Prokaeva, Tatiana; Akar, Harun; Spencer, Brian et al. (2017) Hereditary Renal Amyloidosis Associated With a Novel Apolipoprotein A-II Variant. Kidney Int Rep 2:1223-1232
Klimtchuk, Elena S; Prokaeva, Tatiana B; Spencer, Brian H et al. (2017) In vitro co-expression of human amyloidogenic immunoglobulin light and heavy chain proteins: a relevant cell-based model of AL amyloidosis. Amyloid 24:115-122
Frame, Nicholas M; Gursky, Olga (2017) Structure of serum amyloid A suggests a mechanism for selective lipoprotein binding and functions: SAA as a hub in macromolecular interaction networks. Amyloid 24:13-14
Das, Madhurima; Wilson, Christopher J; Mei, Xiaohu et al. (2017) Structural stability and local dynamics in disease-causing mutants of human apolipoprotein a-I: what makes the protein amyloidogenic? Amyloid 24:11-12
Jayaraman, Shobini; Sánchez-Quesada, Jose Luis; Gursky, Olga (2017) Triglyceride increase in the core of high-density lipoproteins augments apolipoprotein dissociation from the surface: Potential implications for treatment of apolipoprotein deposition diseases. Biochim Biophys Acta Mol Basis Dis 1863:200-210
Jayaraman, Shobini; Gantz, Donald L; Haupt, Christian et al. (2017) Serum amyloid A forms stable oligomers that disrupt vesicles at lysosomal pH and contribute to the pathogenesis of reactive amyloidosis. Proc Natl Acad Sci U S A 114:E6507-E6515
Frame, Nicholas M; Jayaraman, Shobini; Gantz, Donald L et al. (2017) Serum amyloid A self-assembles with phospholipids to form stable protein-rich nanoparticles with a distinct structure: A hypothetical function of SAA as a ""molecular mop"" in immune response. J Struct Biol 200:293-302

Showing the most recent 10 out of 53 publications