This application seeks support for continued development of EMAN, an extensive image processing suite for electron microscopists. Structural biology is the study of the 3-D structure of individual molecules and biological nanoassemblies for the purpose of understanding their function and relating that function to cellular processes. Such studies are used both to provide a physical context to biochemistry as well as to study specific interactions, such as drugs interacting with target molecules, how viruses interact with cells or how biomolecules physically function. EMAN's primary use is for a technique known as single particle analysis, which merges thousands to hundreds of thousands of 2-D images of individual molecules/ assemblies to produce a high resolution 3-D reconstruction. EMAN has an installed user-base of over 1500 users worldwide, and includes a complete OpenGL based 3-D Graphical User Interface (GUI) built on an extensive library of hundreds of image processing algorithms. This application seeks continued support for the development of EMAN and for expanding its capabilities to make it useful to a broader range of researchers. We will support a number of new TEM methodologies, such as helical processing, random conical tilt and single particle tomography. In addition, we will connect EMAN's advanced GUI to several other specialized TEM image processing software tools, permitting users to seamlessly move data back and forth between the various packages, and use EMAN's advanced GUI to analyze and merge results. At present the process of using multiple software packages is exceptionally difficult and time consuming due to differing standards between the packages. We will establish the necessary data and convention translations to make such processing straightforward. EMAN is also beginning to be used as a component in software projects in other disciplines. This application will permit us to give assistance to these developers working to expand EMAN's usefulness to new biological communities. Finally, we will provide continuing support to our existing users, by enhancing documentation and extending EMAN's cross-platform support. Combined, these activities will serve to greatly enhance the productivity of this community and provide useful tools to new groups of NIH funded users. These methods are used in diverse areas of biology, and have expanded our understanding of diseases and conditions as diverse as neurodegeneration, heart disease and cancer.

Public Health Relevance

EMAN is software for analysis of electron microscopy images in 3-D. It is used in a wide range of health related areas, such as learning how drugs interact with target molecules, how viruses interact with cells and developing a physical understanding the biochemistry of the cell. It has expanded our knowledge of a wide range of disease processes such as neurodegenerative diseases, viral infection and cancer.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM080139-06
Application #
8075181
Study Section
Special Emphasis Panel (ZRG1-BDMA-M (02))
Program Officer
Flicker, Paula F
Project Start
2006-06-01
Project End
2015-05-31
Budget Start
2011-06-01
Budget End
2012-05-31
Support Year
6
Fiscal Year
2011
Total Cost
$305,213
Indirect Cost
Name
Baylor College of Medicine
Department
Biochemistry
Type
Schools of Medicine
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Bell, James M; Chen, Muyuan; Durmaz, Tunay et al. (2018) New software tools in EMAN2 inspired by EMDatabank map challenge. J Struct Biol 204:283-290
Sun, Stella Y; Kaelber, Jason T; Chen, Muyuan et al. (2018) Flagellum couples cell shape to motility in Trypanosoma brucei. Proc Natl Acad Sci U S A 115:E5916-E5925
Fan, Guizhen; Baker, Mariah R; Wang, Zhao et al. (2018) Cryo-EM reveals ligand induced allostery underlying InsP3R channel gating. Cell Res 28:1158-1170
Kim, Seung Joong; Fernandez-Martinez, Javier; Nudelman, Ilona et al. (2018) Integrative structure and functional anatomy of a nuclear pore complex. Nature 555:475-482
Su, Zhaoming; Wu, Chao; Shi, Liuqing et al. (2018) Electron Cryo-microscopy Structure of Ebola Virus Nucleoprotein Reveals a Mechanism for Nucleocapsid-like Assembly. Cell 172:966-978.e12
Dai, Wei; Chen, Muyuan; Myers, Christopher et al. (2018) Visualizing Individual RuBisCO and Its Assembly into Carboxysomes in Marine Cyanobacteria by Cryo-Electron Tomography. J Mol Biol 430:4156-4167
Zhang, Kaiming; Keane, Sarah C; Su, Zhaoming et al. (2018) Structure of the 30 kDa HIV-1 RNA Dimerization Signal by a Hybrid Cryo-EM, NMR, and Molecular Dynamics Approach. Structure 26:490-498.e3
Galaz-Montoya, Jesús G; Ludtke, Steven J (2017) The advent of structural biology in situ by single particle cryo-electron tomography. Biophys Rep 3:17-35
Chen, Muyuan; Dai, Wei; Sun, Stella Y et al. (2017) Convolutional neural networks for automated annotation of cellular cryo-electron tomograms. Nat Methods 14:983-985
Cheng, Tat Cheung; Akey, Ildikó V; Yuan, Shujun et al. (2017) A Near-Atomic Structure of the Dark Apoptosome Provides Insight into Assembly and Activation. Structure 25:40-52

Showing the most recent 10 out of 51 publications