A central concern of the present post-genomic era of biology is understanding the chemical and physical mechanisms by which gene expression is regulated. Appropriate activation and repression of particular genes is necessary for maintaining normal cell function and is required for executing the programs of cell differentiation that are essential to the development of multicellular organisms. Collectively, gene regulatory systems are the """"""""brain"""""""" of the cell that allow it to respond appropriately to environmental stimuli. Many cancers and other diseases result from deranged gene regulation. We here propose an entirely new approach to studying the molecular mechanisms of gene regulation in vitro. Instead of studying populations of molecules, we will directly visualize the regulatory machinery attached to an isolated single DNA molecule, following the progression of the machinery through its different states in real time while simultaneously observing the extent of transcriptional activation. Such direct visualization is made possible by novel multi-wavelength single-molecule fluorescence instrumentation newly developed our laboratory. This approach will allow us for the first time to elucidate regulation mechanisms by directly analyzing the dynamics of individual molecular interactions in complete regulatory complexes, instead of relying on inferences founded on data from piecemeal studies on individual proteins and their equilibrium interactions with DNA or with RNA polymerase. We will apply this technology to three different systems involved in regulation of transcription initiation and elongation in Escherichia coli. Each system was chosen because it is a prototype for a common mechanism of transcription regulation that functions analogously in both prokaryotes and eukaryotes. The proposed research will elucidate basic mechanisms of transcription regulation. In the long term this will improve public health by improving our understanding of human biology. In addition, the proposed research will help define the molecular basis for regulatory switches that affect virulence and environmental dissemination of human pathogens. This basic knowledge is expected to aid in the scientific research aimed at development of agents to combat infectious disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM081648-03
Application #
7658722
Study Section
Macromolecular Structure and Function C Study Section (MSFC)
Program Officer
Lewis, Catherine D
Project Start
2007-07-15
Project End
2011-06-30
Budget Start
2009-07-01
Budget End
2010-06-30
Support Year
3
Fiscal Year
2009
Total Cost
$318,668
Indirect Cost
Name
Brandeis University
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
616845814
City
Waltham
State
MA
Country
United States
Zip Code
02454
Braun, Joerg E; Friedman, Larry J; Gelles, Jeff et al. (2018) Synergistic assembly of human pre-spliceosomes across introns and exons. Elife 7:
Tetone, Larry E; Friedman, Larry J; Osborne, Melisa L et al. (2017) Dynamics of GreB-RNA polymerase interaction allow a proofreading accessory protein to patrol for transcription complexes needing rescue. Proc Natl Acad Sci U S A 114:E1081-E1090
Ticau, Simina; Friedman, Larry J; Champasa, Kanokwan et al. (2017) Mechanism and timing of Mcm2-7 ring closure during DNA replication origin licensing. Nat Struct Mol Biol 24:309-315
Chadda, Rahul; Krishnamani, Venkatramanan; Mersch, Kacey et al. (2016) The dimerization equilibrium of a ClC Cl(-)/H(+) antiporter in lipid bilayers. Elife 5:
Harden, Timothy T; Wells, Christopher D; Friedman, Larry J et al. (2016) Bacterial RNA polymerase can retain ?70 throughout transcription. Proc Natl Acad Sci U S A 113:602-7
Hoskins, Aaron A; Rodgers, Margaret L; Friedman, Larry J et al. (2016) Single molecule analysis reveals reversible and irreversible steps during spliceosome activation. Elife 5:
Friedman, Larry J; Gelles, Jeff (2015) Multi-wavelength single-molecule fluorescence analysis of transcription mechanisms. Methods 86:27-36
Ticau, Simina; Friedman, Larry J; Ivica, Nikola A et al. (2015) Single-molecule studies of origin licensing reveal mechanisms ensuring bidirectional helicase loading. Cell 161:513-525
Yang, Boqian; Pu, Mingming; Khan, Hanif M et al. (2015) Quantifying transient interactions between Bacillus phosphatidylinositol-specific phospholipase-C and phosphatidylcholine-rich vesicles. J Am Chem Soc 137:14-7
Paramanathan, Thayaparan; Reeves, Daniel; Friedman, Larry J et al. (2014) A general mechanism for competitor-induced dissociation of molecular complexes. Nat Commun 5:5207

Showing the most recent 10 out of 28 publications