Defects in the equal partitioning of chromosomes at cell division causes aneuploidy, a genetic catastrophe that results in spontaneous abortion or birth defects if it arises in the gametes and that is a major contributor to gene dosage imbalances in almost all human cancers. The centromere is the locus on each chromosome that directs accurate chromosome segregation at cell division in healthy cells. The focus of this project is to address three related major questions regarding centromeres: How are centromeres established? How are centromeres maintained over the long timescale that human biology requires? What is the relationship between the epigenetic components that define centromere location and the DNA sequences that rapidly evolve at mammalian centromeres to drive chromosome evolution? Centromeres are the chromosomal loci that confer genetic stability at cell division, but the DNA sequences typically found at the loci are paradoxically neither necessary nor sufficient for centromere function. Rather, centromeres are specified in metazoans and many other eukaryotes through an epigenetic process. Key to epigenetic centromere specification is a histone H3 variant, CENP-A, and in this proposal we now build on the major findings we made in the previous funding cycle regarding a nucleosome structural transition conferred by its close binding partner, CENP-C, the regulation of its cell cycle-coupled chromatin assembly, its role in the earliest steps in centromere formation, and defining the major oligomeric form and structural ?signature? of CENP-A nucleosomes at human centromeres. We have identified three critical areas of investigation that are now ripe for eliciting major insight at centromeres: 1) the molecular basis for how centromeres are epigenetically maintained, 2) the processes that are coupled to the genesis of a new centromere, and 3) the molecular underpinnings of centromere changes implicated in chromosome evolution. We will pursue these topics using biochemical, genomic, structural, molecular genetic, and cell biological approaches, and together these studies have the promise to generate valuable insight into the epigenetic and genetic features of the centromere that ultimately ensure stable inheritance of the genome at cell division.

Public Health Relevance

Chromosomal inheritance must be flawless every time the cell divides or else unequal chromosome partitioning in the daughter cells, along with the imbalanced dosage of the genes that they carry, will lead to major medical problems such as spontaneous abortion of embryos and fetuses, birth defects in newborns, and tumor formation and progression in adults. Genome partitioning is controlled by proteins that usually reside on highly repetitive DNA at a single locus on each chromosome. The work proposed here promises to advance our knowledge of how this critical process is performed without error in healthy cells and which molecules may be to blame when catastrophic loss or gain of a chromosome occurs in disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM082989-11
Application #
9536821
Study Section
Molecular Genetics B Study Section (MGB)
Program Officer
Ainsztein, Alexandra M
Project Start
2008-07-01
Project End
2021-04-30
Budget Start
2018-05-01
Budget End
2019-04-30
Support Year
11
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Biochemistry
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Han, Joseph; Lachance, Catherine; Ricketts, M Daniel et al. (2018) The scaffolding protein JADE1 physically links the acetyltransferase subunit HBO1 with its histone H3-H4 substrate. J Biol Chem 293:4498-4509
Zasadzi?ska, Ewelina; Huang, Jiehuan; Bailey, Aaron O et al. (2018) Inheritance of CENP-A Nucleosomes during DNA Replication Requires HJURP. Dev Cell 47:348-362.e7
Iwata-Otsubo, Aiko; Dawicki-McKenna, Jennine M; Akera, Takashi et al. (2017) Expanded Satellite Repeats Amplify a Discrete CENP-A Nucleosome Assembly Site on Chromosomes that Drive in Female Meiosis. Curr Biol 27:2365-2373.e8
Fachinetti, Daniele; Logsdon, Glennis A; Abdullah, Amira et al. (2017) CENP-A Modifications on Ser68 and Lys124 Are Dispensable for Establishment, Maintenance, and Long-Term Function of Human Centromeres. Dev Cell 40:104-113
Guo, Lucie Y; Allu, Praveen Kumar; Zandarashvili, Levani et al. (2017) Centromeres are maintained by fastening CENP-A to DNA and directing an arginine anchor-dependent nucleosome transition. Nat Commun 8:15775
Stankovic, Ana; Guo, Lucie Y; Mata, João F et al. (2017) A Dual Inhibitory Mechanism Sufficient to Maintain Cell-Cycle-Restricted CENP-A Assembly. Mol Cell 65:231-246
Nechemia-Arbely, Yael; Fachinetti, Daniele; Miga, Karen H et al. (2017) Human centromeric CENP-A chromatin is a homotypic, octameric nucleosome at all cell cycle points. J Cell Biol 216:607-621
Lampson, Michael A; Black, Ben E (2017) Cellular and Molecular Mechanisms of Centromere Drive. Cold Spring Harb Symp Quant Biol 82:249-257
Sekulic, N; Black, B E (2016) Preparation of Recombinant Centromeric Nucleosomes and Formation of Complexes with Nonhistone Centromere Proteins. Methods Enzymol 573:67-96
Avgousti, Daphne C; Herrmann, Christin; Kulej, Katarzyna et al. (2016) A core viral protein binds host nucleosomes to sequester immune danger signals. Nature 535:173-7

Showing the most recent 10 out of 42 publications