The physical organization of chromosomes is intimately tied to gene regulation. Chromatin remodeling refers to the dynamic compaction and decondensation of eukaryotic chromosomes through the covalent modification and physical movement of nucleosomes. Knowledge of the processes that drive remodeling are essential for gaining a more insightful understanding of human diseases that result from disruptions of normal gene regulation, such as cancer and inherited developmental disorders. Relatively little is known regarding the mechanism by which ATP-dependent remodeling factors alter nucleosome structure, with no understanding of how distinct remodeler domains functionally interact to promote remodeling, how key remodeler domains are positioned in space with respect to one another, nor how remodelers embrace the nucleosome substrate. The long-term objective of this proposal is to establish a biochemical and biophysical framework necessary for describing and understanding the process of chromatin remodeling. This proposal focuses on the CHD1 chromatin remodeling factor, with specific aims to (1) dissect the CHD1 remodeling cycle by characterizing partially dysfunctional variants, (2) determine the architecture of the CHD1 remodeler using X-ray crystallography, and (3) determine the organization of a CHD1:nucleosome complex using small angle X-ray scattering (SAXS) and DNA footprinting. By coupling functional studies of CHD1 with structural information gained through X-ray crystallography, SAXS, and DNA footprinting, we expect to elucidate key steps of the remodeling reaction. In the future, a deeper understanding of chromatin remodeling will be essential for developing therapeutics that manipulate genome-wide gene expression for treatment of human disease.
Nearly all cells in the human body possess the same set of genes, yet only a subset of these genes are turned """"""""on"""""""" in any particular tissue. The """"""""on"""""""" and """"""""off"""""""" states of genes are regulated in a complex and ill-defined manner that directly correlates with the physical packaging of chromosomes, called the chromatin structure. Understanding the process by which chromosomes can be unpackaged and repackaged by so-called chromatin remodeling factors is necessary for understanding and therefore combatting many diseases such as cancer where there are imbalances in gene expression.
Showing the most recent 10 out of 26 publications