Increasing evidence suggests that commonly used inhaled anesthetics, especially isoflurane, cause neuronal apoptosis in the developing brain, which is associated with memory loss and learning disabilities. The long term goal of this research is to understand the mechanisms of anesthesia-mediated neurotoxicity, with an expectation that this knowledge will eventually lead to more efficacious and safer use of inhaled anesthetics. The immediate goal of the study is to test our central hypothesis that inhaled anesthetics induce cell death by apoptosis in a dose- and time-dependent manner by causing excessive calcium release from the endoplasmic reticulum (ER) via over activation of a calcium channel (IP3 receptor) on the ER membrane. An additional goal of this project is to study and better understand the double features of isoflurane's neurotoxic and neuroprotective effects in both cell culture and animal models. We will test these hypotheses via the following specific aims: (1).
Aim 1 will test whether prolonged exposure of isoflurane induces apoptosis by causing excessive calcium release from the ER and depletion of ER calcium via over activation of IP3 receptor. We will examine whether these effects lead to neuronal death by apoptosis, especially in neurons with elevated IP3 receptor activity such as cells with Alzheimer's presenilin-1 mutation or Huntington's Q111 mutation. (2).
Aim 2 will test whether prolonged exposure of Isoflurane induces neuronal apoptosis, subsequent memory and learning disabilities in developing rat brains by over activation of IP3 receptors. We will also test whether these effects can be inhibited by the IP3 receptor antagonist xestospongin C. (3).
Aim 3 will examine whether a short exposure of isoflurane in cell culture and animal models provides neuroprotection by preconditioning neurons with a moderate calcium release from the ER via activation of IP3 receptors.
Aim 3 will further examine whether these induced endogenous neuroprotective mechanisms occur by over expression of some ER stress proteins (e.g. GRP78, HSP70) or changes of apoptotic regulatory proteins (e.g. Bcl-2/Bax). Our preliminary studies have suggested that sevoflurane and desflurane, at equipotent concentrations, have much less potency than isoflurane to cause apoptosis, as well as abnormal calcium release from the ER. We will further compare the neurotoxic effects of isoflurane, sevoflurane and desflurane in both cell culture and animal models.

Public Health Relevance

Our preliminary studies suggest that commonly used inhaled anesthetics, especially isoflurane, induce apoptotic neuronal death by causing excessive calcium release from the endoplasmic reticulum via over activation of a calcium channel (IP3 receptor) on the ER membrane. We therefore intend to study the mechanisms through which inhaled anesthetics induce neuronal apoptosis via disruption of intracellular calcium homeostasis. Ultimately we hope to develop a strategy to prevent these harmful effects. This research will increase our understanding of general anesthesia-mediated neurotoxicity and make a safer use of inhaled anesthetics to surgical patients.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM084979-02
Application #
7690355
Study Section
Neural Oxidative Metabolism and Death Study Section (NOMD)
Program Officer
Cole, Alison E
Project Start
2008-09-22
Project End
2013-07-31
Budget Start
2009-08-01
Budget End
2010-07-31
Support Year
2
Fiscal Year
2009
Total Cost
$275,625
Indirect Cost
Name
University of Pennsylvania
Department
Anesthesiology
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Xu, Z; Liu, Z; Zhang, Y et al. (2018) S100? in newborns after C-section with general vs. epidural anesthesia: a prospective observational study. Acta Anaesthesiol Scand 62:293-303
Ren, Gongyi; Zhou, Yachun; Liang, Ge et al. (2017) General Anesthetics Regulate Autophagy via Modulating the Inositol 1,4,5-Trisphosphate Receptor: Implications for Dual Effects of Cytoprotection and Cytotoxicity. Sci Rep 7:12378
Wang, Yong; Shi, Yun; Wei, Huafeng (2017) Calcium Dysregulation in Alzheimer's Disease: A Target for New Drug Development. J Alzheimers Dis Parkinsonism 7:
Qiao, Hui; Li, Yun; Xu, Zhendong et al. (2017) Propofol Affects Neurodegeneration and Neurogenesis by Regulation of Autophagy via Effects on Intracellular Calcium Homeostasis. Anesthesiology 127:490-501
Yang, Meirong; Wei, Huafeng (2017) Anesthetic neurotoxicity: Apoptosis and autophagic cell death mediated by calcium dysregulation. Neurotoxicol Teratol 60:59-62
Liang, Li; Wei, Huafeng (2015) Dantrolene, a treatment for Alzheimer disease? Alzheimer Dis Assoc Disord 29:1-5
Wu, Zhen; Yang, Bin; Liu, Chunxia et al. (2015) Long-term dantrolene treatment reduced intraneuronal amyloid in aged Alzheimer triple transgenic mice. Alzheimer Dis Assoc Disord 29:184-191
Joseph, J Donald; Peng, Yi; Mak, Don-On Daniel et al. (2014) General anesthetic isoflurane modulates inositol 1,4,5-trisphosphate receptor calcium channel opening. Anesthesiology 121:528-37
Peng, Jun; Drobish, Julie K; Liang, Ge et al. (2014) Anesthetic preconditioning inhibits isoflurane-mediated apoptosis in the developing rat brain. Anesth Analg 119:939-46
Yang, Bin; Liang, Ge; Khojasteh, Soorena et al. (2014) Comparison of neurodegeneration and cognitive impairment in neonatal mice exposed to propofol or isoflurane. PLoS One 9:e99171

Showing the most recent 10 out of 19 publications