This proposal describes a plan to develop a method for visualizing live cell physiology with high resolution using integrated Differential Phase Contrast-Scanning Transmission Electron Microscopy (iDPC-STEM) at low dose to promote viability. Visualizing physiology demands spatial resolution with a commensurate depth-of- field on the scale of the protein machinery (3-7 nm) that drives it without concomitant damage. With the introduction of a liquid flow cell containing water in a vacuum-tight envelope made from membranes that are transparent to the electron beam, it should be possible to scrutinize biology with high-resolution under physiological conditions with STEM. This proposal focuses on three specific technical challenges, testing solutions in a crucible of well characterized biological systems: 1. Improve resolution using a liquid flow cell formed from ultra-thin membranes and thin spacers. To reduce scattering in the membrane and liquid, it is practical to shrink the silicon nitride (SiN) membranes forming the liquid cell to 8-10 nm, and space them 150 nm apart without compromising the window integrity. To eliminate bulging in a liquid cell loaded with fluid, the windows will be reinforced with thick ribs so that a large >400 ?m2 area can be spanned. However, even 10 nm SiN membranes are still too thick for high-resolution imaging. So, (3 nm) thin amorphous silicon (a-Si) and atomically thin graphene or h-BN membranes spanning ribs formed from SiN will be used as windows for high-resolution imaging. The resolution will be tested using a Titan STEM by visualizing adenosine triphosphate (ATP) and fluorescent streptavidin (STR). 2. Improve contrast with iDPC-STEM imaging. To increase the visibility of transparent biological samples, a phase-contrast method for imaging, iDPC-STEM, will be adopted that uses a four-quadrant (segmented) split- detector to measure the gradient of a phase object. iDPC-STEM boasts a higher signal to noise ratio compared to conventional STEM, which offers the possibility for extremely low-dose imaging. The resolution, contrast and concomitant damage will be tested in an aberration-corrected, iDPC-equipped Themis Z (with 60 pm resolution) by visualizing ATP and fluorescent STR in thin (0-50 nm thick) liquid layers. 3. Finally, low-dose iDPC-STEM will be used with an ultra-thin liquid flow cell to visualize the smallest prokaryotic cells. If the electron probe interacts with a cell at the top membrane in the liquid cell, high- resolution images may be captured this way. Because the probe is so shallow along the optic-axis, a focus series may also be used to section a cell for 3D tomography. To test these ideas, four strains of Mycoplasma (100 nm in size) will be cultured in a shallow (150 nm) flow cell and visualized with iDPC-STEM to discover the role their nanostructure plays in infection. In specimens this thick, multi-slice simulations may be required to inform on the structure. After exposure to the beam, a LIVE/DEAD assay, along with Mycoplasma transformed with plasmids that produce an inducible fluorescent reporter will be used to score viability.

Public Health Relevance

This proposal describes a plan to develop a method for visualizing live cell physiology with high resolution using Scanning Transmission Electron Microscopy (STEM). The desired outcome of the project is to improve resolution using a liquid flow cell formed from ultra-thin membranes and thin spacers; improve contrast with phase-contrast integrated differential phase contrast (iDPC) STEM Imaging; and use low dose iDPC-STEM with an ultra-thin liquid flow cell to visualize the smallest prokaryotic cells without compromising viability.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
1R01GM138870-01
Application #
10034918
Study Section
Instrumentation and Systems Development Study Section (ISD)
Program Officer
Sammak, Paul J
Project Start
2020-08-01
Project End
2024-07-31
Budget Start
2020-08-01
Budget End
2021-07-31
Support Year
1
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Notre Dame
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
824910376
City
Notre Dame
State
IN
Country
United States
Zip Code
46556