Iron deficiency (ID) is one of the most common nutrient deficiencies worldwide, affecting two billion people and up to 30% of all pregnant women and their offspring. It affects at least 3 major aspects of early brain development in the offspring. Fetal/neonatal ID has particularly profound effects on the developing hippocampus, the brain region responsible for recognition learning and memory. ID during late fetal and early postnatal life affects the genome, metabolome, structure, intracellular signaling pathways, electrophysiology and specific behavioral functions of the developing hippocampus. These deficits manifest while the infant or rodent pup is iron deficient and remain into adulthood in spite of iron repletion. In humans and dietary ID anemia (IDA) animal models, it is unclear whether structural and behavioral effects in the developing brain are due directly to a lack of iron interacting with important transcriptional, translational or post-translational processes or to indirect effects such as hypoxia due to anemia, stress or increased uptake of toxic divalent cations. We recently generated two non-anemic genetic mouse models by conditionally altering the expression of two iron uptake transport proteins in hippocampus area CA-1 in late gestation to directly assess iron's role in learning and memory. The hippocampus requires adequate energy and growth factors to differentiate normally. Fetal/neonatal ID alters the mammalian Target of Rapamycin (mTOR) pathway, an evolutionarily highly conserved signaling cascade that senses changes in neuronal nutritional, oxygen and growth factor signaling status and responds by adjusting protein translation and actin polymerization rates, which in turn determine neuronal structure and function. Iron plays a key, direct role in regulating mTOR activity through cytochromes and hypoxia inducible factor 1-alpha. The fundamental mechanisms by which neurons are dependent on iron for growth and development is not understood.
In Aim 1, we seek to use our unique models to test hypotheses about the fundamental mechanisms by which neuronal growth and development are dependent on iron's regulation of elements of the mTOR pathway. Early-life ID also alters regulation of growth factors mediating hippocampal plasticity and function in adulthood including Brain Derived Neurotrophic Factor (BDNF) and its downstream effectors. The mechanism of this long-term effect following early ID is not known but we hypothesize involves epigenetic mechanisms.
In aim 2, we will test whether epigenetic chromatin modifications of BDNF underlie the long-term plasticity loss following early IDA. Finally, since prompt iron treatment of early IDA in humans and rodents does not completely restore cognitive health, adjunct therapies in addition to iron may be needed.
In Aim 3, we capitalize on our understanding of the basic mechanisms of the short and long-term neuropathology to test whether choline treatment in addition to iron normalizes neuronal development and adult memory function.

Public Health Relevance

Iron deficiency (ID) is one of the most prevalent nutritional deficiencies in the world. ID in the late fetal and newborn period affects cognitive performance while babies and young animal models are iron deficient, but deficits persist long after complete treatment with iron. We propose to perform studies in iron deficient anemic rat pups and 2 genetic mouse models of ID. Successful completion of these studies will a) emphasize the need to identify and treat ID during pregnancy and early childhood, b) provide insights into how early life iron nutrition affects brain function across the lifespan and c) provide new interventions that are rapidly translatable to dietary and life-style recommendations in humans.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Project (R01)
Project #
2R01HD029421-16A1
Application #
8103509
Study Section
Integrative Nutrition and Metabolic Processes Study Section (INMP)
Program Officer
Grave, Gilman D
Project Start
1994-12-01
Project End
2016-03-31
Budget Start
2011-04-01
Budget End
2012-03-31
Support Year
16
Fiscal Year
2011
Total Cost
$328,252
Indirect Cost
Name
University of Minnesota Twin Cities
Department
Pediatrics
Type
Schools of Medicine
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Georgieff, Michael K; Tran, Phu V; Carlson, Erik S (2018) Atypical fetal development: Fetal alcohol syndrome, nutritional deprivation, teratogens, and risk for neurodevelopmental disorders and psychopathology. Dev Psychopathol 30:1063-1086
Barks, Amanda; Hall, Anne M; Tran, Phu V et al. (2018) Iron as a model nutrient for understanding the nutritional origins of neuropsychiatric disease. Pediatr Res :
Georgieff, Michael K; Ramel, Sara E; Cusick, Sarah E (2018) Nutritional influences on brain development. Acta Paediatr 107:1310-1321
Cusick, Sarah E; Georgieff, Michael K; Rao, Raghavendra (2018) Approaches for Reducing the Risk of Early-Life Iron Deficiency-Induced Brain Dysfunction in Children. Nutrients 10:
Condon, David E; Tran, Phu V; Lien, Yu-Chin et al. (2018) Defiant: (DMRs: easy, fast, identification and ANnoTation) identifies differentially Methylated regions from iron-deficient rat hippocampus. BMC Bioinformatics 19:31
Wallin, Diana J; Zamora, Tara G; Alexander, Michelle et al. (2017) Neonatal mouse hippocampus: phlebotomy-induced anemia diminishes and treatment with erythropoietin partially rescues mammalian target of rapamycin signaling. Pediatr Res 82:501-508
Bastian, T W; Duck, K A; Michalopoulos, G C et al. (2017) Eltrombopag, a thrombopoietin mimetic, crosses the blood-brain barrier and impairs iron-dependent hippocampal neuron dendrite development. J Thromb Haemost 15:565-574
Cusick, Sarah E; Georgieff, Michael K (2016) The Role of Nutrition in Brain Development: The Golden Opportunity of the ""First 1000 Days"". J Pediatr 175:16-21
Zamora, Tara G; Guiang 3rd, Sixto F; Widness, John A et al. (2016) Iron is prioritized to red blood cells over the brain in phlebotomized anemic newborn lambs. Pediatr Res 79:922-8
Tran, Phu V; Kennedy, Bruce C; Pisansky, Marc T et al. (2016) Prenatal Choline Supplementation Diminishes Early-Life Iron Deficiency-Induced Reprogramming of Molecular Networks Associated with Behavioral Abnormalities in the Adult Rat Hippocampus. J Nutr 146:484-93

Showing the most recent 10 out of 59 publications