We have undertaken a project to generate models of human congenital defects by screening ENU- mutagenized mice for recessive mutations affecting late embryonic development. The screen incorporated a genetic mapping component to facilitate the positional cloning and functional characterization of the mutant genes. The strategy has worked well, and we have generated many mice with phenotypes similar to human malformation syndromes and birth defects. We have mapped most of these, and identified the mutated locus in over 40 lines. In addition to characterizing the biology of the defects in the mutant mice, we have in several cases established that the genes we identified play a role in the causation of human disease. Thus goals of our project to date have been met. In this renewal proposal we aim to continue this effort, taking advantage of substantial progress in relevant genomic and transgenic technology that will make this project even more productive. Most importantly, we plan to take advantage of methods we have developed for positional cloning using whole genome sequencing and ENU-induced variant mapping analysis, which we have shown can be successful even when mice are maintained on inbred genetic backgrounds. This will enable the ascertainment of modifier loci by allowing us to incorporate mutant lines into our screens, evaluate their progeny for enhancement or suppression of the baseline phenotypic abnormalities, and localize the interacting loci without the confounding effects of strain-specific variation. We are applying this strategy for investigation of bone formation and skeletal patterning, because of the considerable clinical significance of these disorders as well as the practicality of their analysis using our planned method.

Public Health Relevance

Treatment of mice with the chemical ENU results in mutations in DNA. By systematically screening families of treated mice, we are able to identify lines with abnormalities of organ development. These are models of human birth defects. The generation of powerful tools for genome analysis allows us to rapidly identify the gene mutated in these abnormal mice. This provides insight into the causes of congenital disorders and the basic biology of human development.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Project (R01)
Project #
5R01HD036404-21
Application #
9839464
Study Section
Genetics of Health and Disease Study Section (GHD)
Program Officer
Mukhopadhyay, Mahua
Project Start
1998-04-01
Project End
2020-12-31
Budget Start
2020-01-01
Budget End
2020-12-31
Support Year
21
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Seattle Children's Hospital
Department
Type
DUNS #
048682157
City
Seattle
State
WA
Country
United States
Zip Code
98105
Geister, Krista A; Timms, Andrew E; Beier, David R (2018) Optimizing Genomic Methods for Mapping and Identification of Candidate Variants in ENU Mutagenesis Screens Using Inbred Mice. G3 (Bethesda) 8:401-409
Abdelhamed, Zakia; Vuong, Shawn M; Hill, Lauren et al. (2018) A mutation in Ccdc39 causes neonatal hydrocephalus with abnormal motile cilia development in mice. Development 145:
Strassman, Alexander; Schnütgen, Frank; Dai, Qi et al. (2017) Generation of a multipurpose Prdm16 mouse allele by targeted gene trapping. Dis Model Mech 10:909-922
Ha, Seungshin; Tripathi, Prem P; Mihalas, Anca B et al. (2017) C-Terminal Region Truncation of RELN Disrupts an Interaction with VLDLR, Causing Abnormal Development of the Cerebral Cortex and Hippocampus. J Neurosci 37:960-971
Ha, Seungshin; Lindsay, Anna M; Timms, Andrew E et al. (2016) Mutations in Dnaaf1 and Lrrc48 Cause Hydrocephalus, Laterality Defects, and Sinusitis in Mice. G3 (Bethesda) 6:2479-87
Gallego-Llamas, Jabier; Timms, Andrew E; Pitstick, Rose et al. (2016) Improvement of ENU Mutagenesis Efficiency Using Serial Injection and Mismatch Repair Deficiency Mice. PLoS One 11:e0159377
Jacobs, Damon T; Silva, Luciane M; Allard, Bailey A et al. (2016) Dysfunction of intraflagellar transport-A causes hyperphagia-induced obesity and metabolic syndrome. Dis Model Mech 9:789-98
Menke, Chelsea; Cionni, Megan; Siggers, Trevor et al. (2015) Grhl2 is required in nonneural tissues for neural progenitor survival and forebrain development. Genesis 53:573-582
Gallego-Llamas, Jabier; Timms, Andrew E; Geister, Krista A et al. (2015) Variant mapping and mutation discovery in inbred mice using next-generation sequencing. BMC Genomics 16:913
Ha, Seungshin; Stottmann, Rolf W; Furley, Andrew J et al. (2015) A forward genetic screen in mice identifies mutants with abnormal cortical patterning. Cereb Cortex 25:167-79

Showing the most recent 10 out of 30 publications