Physical mechanical processes are central to the morphogenesis of embryos and their organs. The goal of this proposal is to apply a multi-scale analysis of the mechanics of convergent extension, identifying biomechanical mechanisms that establish passive tissue properties such as stiffness as well as active processes that generate forces of extension, regulate cell behaviors and tissue deformation, and how passive mechanics and active force generating processes are coordinated within the frog embryo. Studies outlined in this proposal will answer: (1) How are cell-scale structures and tissue mechanics are integrated during elongation? Early development is marked by dramatic changes in the mechanical properties of embryos. To understand how and why these properties change we test simple models of tissue mechanics based on synthetic closed-cell foams using bioengineering and biophysical methods to disrupt features from large scale architecture to the subcellular actomyosin-dependent cortex. (2) What single-cell mechanical processes contribute to convergent extension? We extend our analysis of cell behaviors to an unbiased approach that combines wide-field confocal microscopy with descriptive biomechanical analyses from the level of the cell, to the local neighborhood, to the strain fields of the entire embryo. Combining analyses of neural plate and paraxial somitic mesoderm we describe the dependence of these movements on planar polarity signaling. Using systems approaches we seek to test the dependencies of specific cell behaviors on both upstream signaling systems and their targeted downstream effectors. (3) How are tissue polarity cues transduced into polarized cell behaviors? We hypothesize that polarized cell behaviors and the oriented forces they generate are the result of cues produced by anisotropic strain. To test the roles of polarized intracellular factors and mechanical strain in organizing cell behaviors we use magnetogenetics and micro-scale tissue stretchers. Results from this project will complement ongoing efforts to identify the molecular regulators of morphogenesis by providing a conceptual framework developing new hypotheses of morphogenesis and bioengineering tools to test them. The significance of our work provides researchers a more complete understanding of the contribution of cell- and tissue-mechanics to development, to understand the role of tissue mechanics in oncogenesis, and to provide fundamental physical principles for future functional tissue engineers.

Public Health Relevance

The goal of this proposal is to understand the physical mechanisms that drive cell shape changes, control cell behaviors, generate forces, and establish passive tissue properties such as stiffness, active force production by convergence and extension, and how passive mechanics and active forces shape a vertebrate embryo. The significance of our work extends beyond defining the mechanical conditions and their role in early development to provide fundamental physical principles for future functional tissue engineers, allow a more complete understanding of the contribution of cell- and tissue-mechanics during tissue self-assembly, and to understand the role of tissue mechanics in oncogenesis.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Project (R01)
Project #
5R01HD044750-11
Application #
9552009
Study Section
Development - 2 Study Section (DEV2)
Program Officer
Mukhopadhyay, Mahua
Project Start
2005-09-01
Project End
2021-08-31
Budget Start
2018-09-01
Budget End
2019-08-31
Support Year
11
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Pittsburgh
Department
Biomedical Engineering
Type
Biomed Engr/Col Engr/Engr Sta
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Shook, David R; Kasprowicz, Eric M; Davidson, Lance A et al. (2018) Large, long range tensile forces drive convergence during Xenopus blastopore closure and body axis elongation. Elife 7:
Shawky, Joseph H; Balakrishnan, Uma L; Stuckenholz, Carsten et al. (2018) Multiscale analysis of architecture, cell size and the cell cortex reveals cortical F-actin density and composition are major contributors to mechanical properties during convergent extension. Development 145:
López-Escobar, Beatriz; Caro-Vega, José Manuel; Vijayraghavan, Deepthi S et al. (2018) The non-canonical Wnt-PCP pathway shapes the mouse caudal neural plate. Development 145:
Jackson, Timothy R; Kim, Hye Young; Balakrishnan, Uma L et al. (2017) Spatiotemporally Controlled Mechanical Cues Drive Progenitor Mesenchymal-to-Epithelial Transition Enabling Proper Heart Formation and Function. Curr Biol 27:1326-1335
Stooke-Vaughan, Georgina A; Davidson, Lance A; Woolner, Sarah (2017) Xenopus as a model for studies in mechanical stress and cell division. Genesis 55:
Chanet, Soline; Miller, Callie J; Vaishnav, Eeshit Dhaval et al. (2017) Actomyosin meshwork mechanosensing enables tissue shape to orient cell force. Nat Commun 8:15014
Kim, Hye Young; Jackson, Timothy R; Davidson, Lance A (2017) On the role of mechanics in driving mesenchymal-to-epithelial transitions. Semin Cell Dev Biol 67:113-122
Davidson, Lance A (2017) Mechanical design in embryos: mechanical signalling, robustness and developmental defects. Philos Trans R Soc Lond B Biol Sci 372:
Holt, Brian D; Shawky, Joseph H; Dahl, Kris Noel et al. (2016) Developing Xenopus embryos recover by compacting and expelling single wall carbon nanotubes. J Appl Toxicol 36:579-85
Holt, Brian D; Shawky, Joseph H; Dahl, Kris Noel et al. (2016) Distribution of single wall carbon nanotubes in the Xenopus laevis embryo after microinjection. J Appl Toxicol 36:568-78

Showing the most recent 10 out of 56 publications