We wi11 continue the development of computer methods for analyzing gene regulation. We will further enhance methods to identify regulatory sites from the promoter regions of co-regulated genes. Included in the improvements will be better ways of identifying multiple transcription factors that act coordinately to regulate gene expression. We will also study the evolution of regulatory networks in bacteria. By comparing the homologous regulons in several bacterial species we can study the gain and loss of gene from common regulatory pa ways, the rates at which binding sites specificities change, and the duplication and divergence of regulatory proteins and the genes they regulate. We wil1 continue the development and enhancement of methods to predict RNA structures, especially comparative-based methods that attempt to find common structure, for collections of sequences These methods will be applied to several types of sequences including: { em in vitro} selection product; structural RNA families; mRNA motifs involved in post-transcriptional regulation of gene expression. Each of these projects will be enhanced through collaborations with other groups, primarily experimentalists, who are interested in the application of our methods to their biological problems.

Agency
National Institute of Health (NIH)
Institute
National Human Genome Research Institute (NHGRI)
Type
Research Project (R01)
Project #
5R01HG000249-13
Application #
6490431
Study Section
Genome Study Section (GNM)
Program Officer
Good, Peter J
Project Start
1989-04-01
Project End
2003-12-31
Budget Start
2002-01-01
Budget End
2002-12-31
Support Year
13
Fiscal Year
2002
Total Cost
$269,500
Indirect Cost
Name
Washington University
Department
Genetics
Type
Schools of Medicine
DUNS #
062761671
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Ruan, Shuxiang; Stormo, Gary D (2018) Comparison of discriminative motif optimization using matrix and DNA shape-based models. BMC Bioinformatics 19:86
Chang, Yiming K; Zuo, Zheng; Stormo, Gary D (2018) Quantitative profiling of BATF family proteins/JUNB/IRF hetero-trimers using Spec-seq. BMC Mol Biol 19:5
Hu, Caizhen; Malik, Vikas; Chang, Yiming Kenny et al. (2017) Coop-Seq Analysis Demonstrates that Sox2 Evokes Latent Specificities in the DNA Recognition by Pax6. J Mol Biol 429:3626-3634
Roy, Basab; Zuo, Zheng; Stormo, Gary D (2017) Quantitative specificity of STAT1 and several variants. Nucleic Acids Res 45:8199-8207
Xiao, Shu; Lu, Jia; Sridhar, Bharat et al. (2017) SMARCAD1 Contributes to the Regulation of Naive Pluripotency by Interacting with Histone Citrullination. Cell Rep 18:3117-3128
Zuo, Zheng; Roy, Basab; Chang, Yiming Kenny et al. (2017) Measuring quantitative effects of methylation on transcription factor-DNA binding affinity. Sci Adv 3:eaao1799
Ruan, Shuxiang; Stormo, Gary D (2017) Inherent limitations of probabilistic models for protein-DNA binding specificity. PLoS Comput Biol 13:e1005638
Ruan, Shuxiang; Swamidass, S Joshua; Stormo, Gary D (2017) BEESEM: estimation of binding energy models using HT-SELEX data. Bioinformatics 33:2288-2295
Chang, Yiming K; Srivastava, Yogesh; Hu, Caizhen et al. (2017) Quantitative profiling of selective Sox/POU pairing on hundreds of sequences in parallel by Coop-seq. Nucleic Acids Res 45:832-845
Stormo, Gary D; Roy, Basab (2016) DNA Structure Helps Predict Protein Binding. Cell Syst 3:216-218

Showing the most recent 10 out of 109 publications