The objective of this project is to engineer a new protein pore, MspA, for nanopore DNA sequencing. MspA's short and narrow constriction, its extreme stability against denaturation and its tolerance to mutations make this protein an ideal, inexpensive and novel nanopore sequencing development platform. We have obtained exciting results that demonstrate the feasibility of our proposal. We designed and made MspA mutants that pass DNA. Importantly, mutated MspA can already nearly resolve single nucleotides using co-passing current alone. Molecular dynamics simulation of MspA agrees excellently with experiment. A prototype fast, low-noise current amplifier was built specifically for nanopore sequencing experiments.
Our specific aims are to (i) rationally design, produce and test MspA mutants to improve DNA base recognition and reduce translocation speed;(ii) use molecular dynamics simulation to understand how DNA interacts with MspA and to optimize MspA for nanopore sequencing;(iii) construct a single chain protein to further improve DNA base sensitivity and control of DNA motion in an asymmetric MspA pore;(iv) construct a highly sensitive electronic amplifier and a practical bilayer apparatus. We have formed a team of three outstanding labs with complementary expertise in protein science, protein simulation, single-channel experiments, molecular biology, and instrumentation to realize these aims. It is our goal to develop a system that can sequence a human genome for under $1000.

Public Health Relevance

This three university team is engineering a novel pore from mycobacteria, MspA, for nanopore DNA sequencing. MspA has an ideal shape for nanopore sequencing. The protein pore is remarkably tolerant of mutations so that it can be exactly tailored to be sensitive to individual nucleotides when DNA passes through it.

Agency
National Institute of Health (NIH)
Institute
National Human Genome Research Institute (NHGRI)
Type
Research Project (R01)
Project #
1R01HG005115-01
Application #
7724812
Study Section
Special Emphasis Panel (ZHG1-HGR-N (M1))
Program Officer
Schloss, Jeffery
Project Start
2009-09-23
Project End
2013-06-30
Budget Start
2009-09-23
Budget End
2010-06-30
Support Year
1
Fiscal Year
2009
Total Cost
$711,061
Indirect Cost
Name
University of Washington
Department
Physics
Type
Schools of Arts and Sciences
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Craig, Jonathan M; Laszlo, Andrew H; Brinkerhoff, Henry et al. (2017) Revealing dynamics of helicase translocation on single-stranded DNA using high-resolution nanopore tweezers. Proc Natl Acad Sci U S A 114:11932-11937
Laszlo, A H; Derrrington, I M; Gundlach, J H (2017) Subangstrom Measurements of Enzyme Function Using a Biological Nanopore, SPRNT. Methods Enzymol 582:387-414
Nova, Ian C; Derrington, Ian M; Craig, Jonathan M et al. (2017) Investigating asymmetric salt profiles for nanopore DNA sequencing with biological porin MspA. PLoS One 12:e0181599
Pavlenok, Mikhail; Niederweis, Michael (2016) Hetero-oligomeric MspA pores in Mycobacterium smegmatis. FEMS Microbiol Lett 363:
Comer, Jeffrey; Aksimentiev, Aleksei (2016) DNA sequence-dependent ionic currents in ultra-small solid-state nanopores. Nanoscale 8:9600-13
Laszlo, Andrew H; Derrington, Ian M; Gundlach, Jens H (2016) MspA nanopore as a single-molecule tool: From sequencing to SPRNT. Methods 105:75-89
Bhattacharya, Swati; Yoo, Jejoong; Aksimentiev, Aleksei (2016) Water Mediates Recognition of DNA Sequence via Ionic Current Blockade in a Biological Nanopore. ACS Nano 10:4644-51
Craig, Jonathan M; Laszlo, Andrew H; Derrington, Ian M et al. (2015) Direct Detection of Unnatural DNA Nucleotides dNaM and d5SICS using the MspA Nanopore. PLoS One 10:e0143253
Derrington, Ian M; Craig, Jonathan M; Stava, Eric et al. (2015) Subangstrom single-molecule measurements of motor proteins using a nanopore. Nat Biotechnol 33:1073-5
Morton, Danielle; Mortezaei, Shahab; Yemenicioglu, Sukru et al. (2015) Tailored Polymeric Membranes for Mycobacterium Smegmatis Porin A (MspA) Based Biosensors. J Mater Chem B 3:5080-5086

Showing the most recent 10 out of 32 publications