The lack of knowledge of the mechanisms underlying the reactions of blood with polymeric biomaterials continues to be an obstacle to the design of better materials for use in contact with blood. Our hypothesis about these mechanisms can be stated generally as follows: a specific materials variable causes changes in the adsorbed protein layer that are responsible for changes in platelet adhesion and/or activation. For certain polyurethanes (PEUs), important specific materials variables are thought to be the alkyl chain length and density and the degree of surface enrichment of the fluorocarbon (FC) groups in FC PEUs. A systematic study of the effect of these materials variables on protein and platelet interactions will contribute to better understanding of blood reactivity with polymers.
The specific aims are as follows: 1. The role of the adsorbed adhesion proteins fibrinogen, von Willebrand factor, fibronectin, and vitronectin in causing platelet activation will be determined using plasmas selectively deficient in the protein and a series of PEUs interacting with platelets under flow. Platelet activation will be characterized by measuring the ability of the adherent platelets to participate in platelet-platelet aggregate formation, the conversion of the platelets to the procoagulant state, and in situ measurement of intracellular calcium mobilization in platelets adhering under flow conditions. Dose-response studies of the effect of restoration of the deficient factors will also be done. 2. To test the hypothesis that the platelet activation by biomaterials is a function of both the amount and the state of adsorbed fibrinogen on each type of substrate, the activation of platelets deposited from flowing suspensions will be compared to the total amount and platelet recognizable fraction of fibrinogen on a series of polyurethanes. The platelet recognizability of the adsorbed fibrinogen will be characterized using monoclonal antibodies that bind to each of the putative platelet binding domains of fibrinogen. 3. A series of specially made polyurethanes (PEUs) with variations in chemical composition that should affect the adsorption and the biologic activity of the adhesion proteins and albumin will be used to test our mechanistic material hypotheses. PEUs with differences in side chain length, chain density, and chain type (CH2 or CF2) will be used. PEUs exhibiting low platelet adhesion despite the presence of relatively high amounts of adsorbed fibrinogen will be studied in greater depth, since we believe understanding of the mechanisms by which fibrinogen's biological activity is altered by these materials can contribute to the intelligent design of improved biomaterials. Reference materials will be Biospan and NIH PE and PDMS.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL019419-23
Application #
6388819
Study Section
Surgery and Bioengineering Study Section (SB)
Program Officer
Kelley, Christine A
Project Start
1976-06-01
Project End
2005-03-31
Budget Start
2001-04-01
Budget End
2005-03-31
Support Year
23
Fiscal Year
2001
Total Cost
$186,056
Indirect Cost
Name
University of Washington
Department
Engineering (All Types)
Type
Schools of Engineering
DUNS #
135646524
City
Seattle
State
WA
Country
United States
Zip Code
98195
Horbett, Thomas A (2018) Fibrinogen adsorption to biomaterials. J Biomed Mater Res A 106:2777-2788
Wu, Yuguang; Zhang, Min; Hauch, Kip D et al. (2008) Effect of adsorbed von Willebrand factor and fibrinogen on platelet interactions with synthetic materials under flow conditions. J Biomed Mater Res A 85:829-39
Wu, Yuguang; Simonovsky, Felix I; Ratner, Buddy D et al. (2005) The role of adsorbed fibrinogen in platelet adhesion to polyurethane surfaces: a comparison of surface hydrophobicity, protein adsorption, monoclonal antibody binding, and platelet adhesion. J Biomed Mater Res A 74:722-38
Simonovsky, Felix I; Wu, Yuguang; Golledge, Stephen L et al. (2005) Poly(ether urethane)s incorporating long alkyl side-chains with terminal carboxyl groups as fatty acid mimics: synthesis, structural characterization and protein adsorption. J Biomater Sci Polym Ed 16:1463-83
Tsai, W B; Shi, Q; Grunkemeier, J M et al. (2004) Platelet adhesion to radiofrequency glow-discharge-deposited fluorocarbon polymers preadsorbed with selectively depleted plasmas show the primary role of fibrinogen. J Biomater Sci Polym Ed 15:817-40
Wagner, M S; Horbett, T A; Castner, David G (2003) Characterizing multicomponent adsorbed protein films using electron spectroscopy for chemical analysis, time-of-flight secondary ion mass spectrometry, and radiolabeling: capabilities and limitations. Biomaterials 24:1897-908
Tsai, Wei-Bor; Grunkemeier, John M; Horbett, Thomas A (2003) Variations in the ability of adsorbed fibrinogen to mediate platelet adhesion to polystyrene-based materials: a multivariate statistical analysis of antibody binding to the platelet binding sites of fibrinogen. J Biomed Mater Res A 67:1255-68
Wagner, M S; Shen, M; Horbett, T A et al. (2003) Quantitative analysis of binary adsorbed protein films by time of flight secondary ion mass spectrometry. J Biomed Mater Res A 64:1-11
Tsai, Wei-Bor; Grunkemeier, John M; McFarland, Clive D et al. (2002) Platelet adhesion to polystyrene-based surfaces preadsorbed with plasmas selectively depleted in fibrinogen, fibronectin, vitronectin, or von Willebrand's factor. J Biomed Mater Res 60:348-59
Wagner, Matthew S; McArthur, Sally L; Shen, Mingchao et al. (2002) Limits of detection for time of flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS): detection of low amounts of adsorbed protein. J Biomater Sci Polym Ed 13:407-28

Showing the most recent 10 out of 52 publications