Although HDL-cholesterol (HDL-C) is a recognized risk factor for premature cardiovascular disease, the mechanism(s) by which it is formed, remodeled and of removed from the plasma compartment are not known. Lipolysis of triglyceride-rich lipoproteins is thought to liberate surface components that are HDL precursors; HDL subfractions, with electrophoretic mobilities and sizes distinct from that of alpha-migrating HDL are thought to be precursors of the mature forms of HDL2 and HDL3. However, until recently one source of nascent HDL, the earliest form of this lipoprotein remained unknown. Two facts have implicated the ABC1 transporter protein in HDL formation. Mutations in human ABC1 transporter are associated with HDL-C deficiencies, including Tangier disease and certain other forms of hypoalphalipoproteinemia. In human monocyte derived macrophages and macrophage cell lines, ABC1 is associated with the transfer of cholesterol and phospholipids to the extracellular space. Early forms of HDL are remodeled by several plasma activities giving a form of HDL that is recognized and removed from the plasma compartment by a receptor. Recent evidence suggests that this receptor is scavenger receptor class B type 1 (SRB1), which belongs to the scavenger receptor family of proteins. Thus, ABC1 activity provides an early form of HDL that is remodeled to the mature form that is removed by SRB1. Hypothetically, the connections between ABC1 and SRB1 are formed by the remodeling activities of plasma. These include lecithin:cholesterol acyltransferase, cholesteryl ester transfer protein, phospholipid transfer protein, hepatic lipase, and lipoprotein lipase. The broad goal of this proposal is to identify the mechanism by which this process occurs and the conditions that optimize the transfer of lipids to SRB1. This will be achieved by studying the in vitro remodeling of lipoproteins secreted by macrophage cell lines with high level expression of ABC1 protein and activity as assessed by measurements of lipid efflux. The composition, structure and biological activity of the various remodeled HDL formed under various conditions of plasma transfer, esterification, and lipolysis will be determined. Composition will be determined by various enzymatic and chromatographic methods. Structure will be assessed on the basis of several physical methods including electrophoresis (charge and size), surface and core structure (fluorescence), and circular dichroism. Function will be determined by measuring the binding to SRB1 in ovarian cells and by measuring the turnover in rat plasma using a nontransferable label.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL030914-18
Application #
6756005
Study Section
Special Emphasis Panel (ZRG1-SSS-T (01))
Program Officer
Rabadan-Diehl, Cristina
Project Start
1983-07-01
Project End
2006-06-30
Budget Start
2004-07-01
Budget End
2006-06-30
Support Year
18
Fiscal Year
2004
Total Cost
$188,125
Indirect Cost
Name
Baylor College of Medicine
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Rosales, C; Davidson, W S; Gillard, B K et al. (2016) Speciated High-Density Lipoprotein Biogenesis and Functionality. Curr Atheroscler Rep 18:25
Rodriguez, Perla J; Gillard, Baiba K; Barosh, Rachel et al. (2016) Neo High-Density Lipoprotein Produced by the Streptococcal Serum Opacity Factor Activity against Human High-Density Lipoproteins Is Hepatically Removed via Dual Mechanisms. Biochemistry 55:5845-5853
Pownall, Henry J; Gotto Jr, Antonio M (2016) New Insights into the High-Density Lipoprotein Dilemma. Trends Endocrinol Metab 27:44-53
Pownall, Henry J; Schwartz, Anne V; Bray, George A et al. (2016) Changes in regional body composition over 8 years in a randomized lifestyle trial: The look AHEAD study. Obesity (Silver Spring) 24:1899-905
Rosales, Corina; Patel, Niket; Gillard, Baiba K et al. (2015) Apolipoprotein AI deficiency inhibits serum opacity factor activity against plasma high density lipoprotein via a stabilization mechanism. Biochemistry 54:2295-302
Pownall, Henry J; Bray, George A; Wagenknecht, Lynne E et al. (2015) Changes in body composition over 8 years in a randomized trial of a lifestyle intervention: the look AHEAD study. Obesity (Silver Spring) 23:565-72
Pownall, Henry J; Gillard, Baiba K; Gotto Jr, Antonio M (2013) Setting the course for apoAII: a port in sight? Clin Lipidol 8:551-560
Vasudevan, Madhuri; Tchoua, Urbain; Gillard, Baiba K et al. (2013) Modest diet-induced weight loss reduces macrophage cholesterol efflux to plasma of patients with metabolic syndrome. J Clin Lipidol 7:661-70
Gillard, Baiba K; Raya, Joe L; Ruiz-Esponda, Raul et al. (2013) Impaired lipoprotein processing in HIV patients on antiretroviral therapy: aberrant high-density lipoprotein lipids, stability, and function. Arterioscler Thromb Vasc Biol 33:1714-21
Wooten, Joshua S; Nambi, Preethi; Gillard, Baiba K et al. (2013) Intensive lifestyle modification reduces Lp-PLA2 in dyslipidemic HIV/HAART patients. Med Sci Sports Exerc 45:1043-50

Showing the most recent 10 out of 96 publications