Both heart failure and chronic renal disease induces a state of neurohormonal activation that hastens their progression. Central to these pathophysiologies is the activation of the Renin-Angiotensin system and aldosterone production. Aldosterone production is Ca 2+ dependent and alH low-voltage-activated (LVA), T-type, Ca 2+ channels are the major carriers of Ca 2+ current in the aldosterone producing cell of the zona glomerulosa (AG). Our laboratory has identified the intracellular loop connecting transmembrane domains II and III (II-III loop) on alpha1H channels as an important center for signal integration. CaMKII phosphorylates S1198 to induce a hyperpolarizing shift in the half-activation potential for gating, and GBbeta2ggamma2binds with high-affinity and inhibits aIpha1H channel activity voltage independently. We test the hypothesis that during cell activation the II-III loop recruits these signaling molecules selectively and with high-affinity and thus enables reciprocal channel regulation to contribute functionally to the physiologically actions of Ang II and dopamine, two hormones that exert strong counter-regulatory control of aldosterone production. We use tools of molecular biology, biochemistry, cell biology and electrophysiology to test this hypothesis in the following specific aims:
Aim 1 : Specifically we will: (1.1) identify the residues on the alpha1H II-III loop that mediate high affinity CaMKII binding, (1.2) determine if this binding dynamically localizes the kinase to the channel during cell stimulation, (1.3) introduce peptides or CaMKII-regulation resistant channels to adrenal zona glomerulosa cells to perturb channel regulation and evaluate the stimulation of aldosterone secretion by Ang II.
Aim 2 : Specifically we will: (2.1) identify the critical residues on GBeta2 subunits that mediate inhibition of alpha1H whole-cell channel activity and alpha1H II-III loop binding, (2.2) establish if Gbeta2 subunits inhibit ohH channels in the excised patch, (2.3) use RNAi and viral-mediated delivery of channel regulation-deficient Gbeta subunits to cells of the adrenal zona glomerulosa to disrupt channel regulation and evaluate the inhibition of aldosterone secretion by dopamine.
Showing the most recent 10 out of 38 publications