Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL056683-03
Application #
6110733
Study Section
Project Start
1999-07-01
Project End
2000-06-30
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
3
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Wright State University
Department
Type
DUNS #
City
Dayton
State
OH
Country
United States
Zip Code
45435
Lopes, L T; Patrone, L G A; Li, K-Y et al. (2016) Anatomical and functional connections between the locus coeruleus and the nucleus tractus solitarius in neonatal rats. Neuroscience 324:446-68
Nichols, Nicole L; Powell, Frank L; Dean, Jay B et al. (2014) Substance P differentially modulates firing rate of solitary complex (SC) neurons from control and chronic hypoxia-adapted adult rats. PLoS One 9:e88161
Imber, Ann N; Santin, Joseph M; Graham, Cathy D et al. (2014) A HCO(3)(-)-dependent mechanism involving soluble adenylyl cyclase for the activation of Ca²? currents in locus coeruleus neurons. Biochim Biophys Acta 1842:2569-78
Matott, M P; Ciarlone, G E; Putnam, R W et al. (2014) Normobaric hyperoxia (95% O?) stimulates CO?-sensitive and CO?-insensitive neurons in the caudal solitary complex of rat medullary tissue slices maintained in 40% O?. Neuroscience 270:98-122
Li, Ke-Yong; Putnam, Robert W (2013) Transient outwardly rectifying A currents are involved in the firing rate response to altered CO2 in chemosensitive locus coeruleus neurons from neonatal rats. Am J Physiol Regul Integr Comp Physiol 305:R780-92
Imber, Ann N; Putnam, Robert W (2012) Postnatal development and activation of L-type Ca2+ currents in locus ceruleus neurons: implications for a role for Ca2+ in central chemosensitivity. J Appl Physiol 112:1715-26
Erlichman, Joseph S; Leiter, J C; Gourine, Alexander V (2010) ATP, glia and central respiratory control. Respir Physiol Neurobiol 173:305-11
Erlichman, Joseph S; Leiter, J C (2010) Glia modulation of the extracellular milieu as a factor in central CO2 chemosensitivity and respiratory control. J Appl Physiol 108:1803-11
Dean, Jay B (2010) Hypercapnia causes cellular oxidation and nitrosation in addition to acidosis: implications for CO2 chemoreceptor function and dysfunction. J Appl Physiol 108:1786-95
Garcia 3rd, Alfredo J; Putnam, Robert W; Dean, Jay B (2010) Hyperoxic stimulation of synchronous orthodromic activity and induction of neural plasticity does not require changes in excitatory synaptic transmission. J Appl Physiol 109:820-9

Showing the most recent 10 out of 46 publications