application) There is accumulating evidence that oxidative stress may play a role in the pathogenesis of atherosclerosis. There is relatively little information on the molecular pathways responsible for the altered vascular redox state in this disease. The investigators have recently shown that endothelial and vascular smooth muscle cells contain a hormone sensitive NADPH/NADH oxidase that contributes to the control of the cellular redox state. In VSM cells activation of this pathway appears to be involved in hypertrophy while in endothelial cells it appears to mediate expression of adhesion molecules. The hypothesis is that NADPH/NADH oxidase may be central to the control of the redox state of vascular cells by cytokines. The investigators propose to characterize cytokine activation of the NADPH/NADH oxidase in endothelial and vascular smooth muscle cells and to determine some of the biochemical and molecular genetic mechanisms controlling oxidase activation. They also propose to examine the effects of steady and oscillatory sheer stress on this enzyme activity. The hypothesis is that sheer may exert its effects by modifying NADPH/NADH oxidase activity. Finally, they will examine the expression of vascular NADPH/NADH oxidase components in histological sections of atherosclerotic human aortas and in the aortas of hypercholesterolemic monkeys to gain insight into the pattern of expression of this oxidase and its potential role in atherosclerosis.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
1R01HL058863-01
Application #
2389127
Study Section
Experimental Cardiovascular Sciences Study Section (ECS)
Project Start
1997-08-01
Project End
2000-07-31
Budget Start
1997-08-01
Budget End
1998-07-31
Support Year
1
Fiscal Year
1997
Total Cost
Indirect Cost
Name
Emory University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
042250712
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Fernandez, Isabel; Martin-Garrido, Abel; Zhou, Dennis W et al. (2015) Hic-5 Mediates TGF?-Induced Adhesion in Vascular Smooth Muscle Cells by a Nox4-Dependent Mechanism. Arterioscler Thromb Vasc Biol 35:1198-206
Brown, David I; Griendling, Kathy K (2015) Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circ Res 116:531-49
Abrahao, Thalita B; Griendling, Kathy K (2015) Nuclear factor (erythroid-derived 2)-like 2, the brake in oxidative stress that nicotinamide adenine dinucleotide phosphate-oxidase-4 needs to protect the heart. Hypertension 65:499-501
Vukelic, Sasa; Griendling, Kathy K (2014) Angiotensin II, from vasoconstrictor to growth factor: a paradigm shift. Circ Res 114:754-7
Duran, Charity; San Martín, Alejandra (2014) Do endothelial cells eat tryptophan to die? Circ Res 114:406-8
Datla, Srinivasa Raju; McGrail, Daniel J; Vukelic, Sasa et al. (2014) Poldip2 controls vascular smooth muscle cell migration by regulating focal adhesion turnover and force polarization. Am J Physiol Heart Circ Physiol 307:H945-57
San Martin, Alejandra; Griendling, Kathy K (2014) NADPH oxidases: progress and opportunities. Antioxid Redox Signal 20:2692-4
Sutliff, Roy L; Hilenski, Lula L; Amanso, Angélica M et al. (2013) Polymerase delta interacting protein 2 sustains vascular structure and function. Arterioscler Thromb Vasc Biol 33:2154-61
Williams, Holly C; San Martín, Alejandra; Adamo, Candace M et al. (2012) Role of coronin 1B in PDGF-induced migration of vascular smooth muscle cells. Circ Res 111:56-65
Amanso, Angelica M; Griendling, Kathy K (2012) Differential roles of NADPH oxidases in vascular physiology and pathophysiology. Front Biosci (Schol Ed) 4:1044-64

Showing the most recent 10 out of 51 publications