Myocardial infarction (MI) is responsible for 220,000 deaths annually in the USA [35]. Cardiac ischemia- reperfusion (IR) injury is the pathologic process that links MI to contractile dysfunction. Mitochondrial Ca2+ overload and excessive generation of reactive oxygen species (ROS) are key pathologic events in cardiac IR, leading to opening of the mitochondrial permeability transition (PT) pore and subsequent death of cardiomyocytes. In contrast mitochondria are also implicated in the mechanism of ischemic preconditioning (IPC), in which short non-lethal periods of ischemia protect the heart from prolonged IR injury. An additional factor implicated in IPC is nitric oxide (NO), and we have recently identified two novel mechanisms of NO signaling at the mitochondrial level which are of potential importance in IPC: (i) reversible inhibition of the respiratory chain by NO dependent protein S-nitrosation;(ii) mild uncoupling (H+ leak) mediated via nitrated lipid activation of uncoupling proteins (UCPs) or other targets. Both these events can subsequently inhibit mitochondrial Ca2+ overload and ROS generation, and thus inhibit PT pore opening. To exploit this protective pathway a series of mitochondrially-targeted NO donors have been developed, which exhibit potent cardioprotective effects in cardiomyocyte and perfused heart models of IR injury. Based on these findings, it is hypothesized that reversible respiratory chain inhibition and small regulated increases in H+ leak are mechanisms of NO mediated cardioprotection. This hypothesis will be tested through pursuit of the following specific aims:
Aim 1 : Test the hypothesis that respiratory chain S-nitrosation mediates the cardioprotective effects of NO.
Aim 2 : Test the hypothesis that H+ leak activation by nitro-lipids mediates the cardioprotective effects of NO.
Aim 3 : Test mitochondrially-targeted NO donors as cardioprotective agents. It is anticipated that addressing Aims 1 &2 will define new mechanisms by which NO mediates cardioprotection, and that Aim 3 will lead to novel therapies for the treatment of cardiac IR injury.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL071158-10
Application #
8207217
Study Section
Myocardial Ischemia and Metabolism Study Section (MIM)
Program Officer
Wong, Renee P
Project Start
2002-07-01
Project End
2013-06-30
Budget Start
2012-01-01
Budget End
2013-06-30
Support Year
10
Fiscal Year
2012
Total Cost
$343,035
Indirect Cost
$120,285
Name
University of Rochester
Department
Anesthesiology
Type
Schools of Dentistry
DUNS #
041294109
City
Rochester
State
NY
Country
United States
Zip Code
14627
Smith, Charles O; Wang, Yves T; Nadtochiy, Sergiy M et al. (2018) Cardiac metabolic effects of KNa1.2 channel deletion and evidence for its mitochondrial localization. FASEB J :fj201800139R
Zhang, Jimmy; Wang, Yves T; Miller, James H et al. (2018) Accumulation of Succinate in Cardiac Ischemia Primarily Occurs via Canonical Krebs Cycle Activity. Cell Rep 23:2617-2628
Peoples, Jessica N R; Maxmillian, Timmi; Le, Quynh et al. (2018) Metabolomics reveals critical adrenergic regulatory checkpoints in glycolysis and pentose-phosphate pathways in embryonic heart. J Biol Chem 293:6925-6941
Nadtochiy, Sergiy M; Wang, Yves T; Nehrke, Keith et al. (2018) Cardioprotection by nicotinamide mononucleotide (NMN): Involvement of glycolysis and acidic pH. J Mol Cell Cardiol 121:155-162
Sahni, Prateek V; Zhang, Jimmy; Sosunov, Sergey et al. (2018) Krebs cycle metabolites and preferential succinate oxidation following neonatal hypoxic-ischemic brain injury in mice. Pediatr Res 83:491-497
Nadtochiy, Sergiy M; Wang, Yves T; Zhang, Jimmy et al. (2017) Potential mechanisms linking SIRT activity and hypoxic 2-hydroxyglutarate generation: no role for direct enzyme (de)acetylation. Biochem J 474:2829-2839
Wang, Hezhen; Huwaimel, Bader; Verma, Kshitij et al. (2017) Synthesis and Antineoplastic Evaluation of Mitochondrial Complex?II (Succinate Dehydrogenase) Inhibitors Derived from Atpenin?A5. ChemMedChem 12:1033-1044
Resseguie, Emily A; Brookes, Paul S; O'Reilly, Michael A (2017) SMG-1 kinase attenuates mitochondrial ROS production but not cell respiration deficits during hyperoxia. Exp Lung Res 43:229-239
Smith, Charles Owen; Nehrke, Keith; Brookes, Paul S (2017) The Slo(w) path to identifying the mitochondrial channels responsible for ischemic protection. Biochem J 474:2067-2094
Brookes, Paul S; Taegtmeyer, Heinrich (2017) Metabolism: A Direct Link Between Cardiac Structure and Function. Circulation 136:2158-2161

Showing the most recent 10 out of 66 publications