Inflammation that follows tissue injury is believed to be important in the initiation and progression of various diseases including, atherosclerosis, cancer, and retinopathy. Phospholipase A2s (PLA2s), a group of enzymes that breakdown phospholipids generating arachidonic acid and lysophospholipids have been implicated in inflammation. One of the major events underlying the progression of atherosclerosis is angiogenesis. Endothelial cell (EC) migration and proliferation are critical events in angiogenesis. Emerging evidence suggests that PLA2, arachidonic acid and its eicosanoid metabolites play a role in the regulation of cell migration, proliferation, and apoptosis. In addition, recent investigations using nonsteroidal anti-inflammatory drugs reveal a potential role for eicosanoids in angiogenesis. Based on this knowledge, we hypothesize that eicosanoids, particularly the lipoxygenase-monooxygenase metabolites of arachidonic acid, play an important role in angiogenesis and thereby influence the pathogenesis of atherosclerosis. To test the role of eicosanoids in angiogenesis we will address the following four specific aims: 1. To identify eicosanoids produced in human microvascular endothelial cells (HMVEC) and determine their effects on angiogenesis using in vitro and in vivo models. 2. To determine the effects of angiogenic eicosanoids on HMVEC migration and proliferation. 3. To test the role of the Jak/STAT and PI3K/Akt pathways in angiogenic eicosanoid-induced HMVEC migration and proliferation. 4. To identify the effector molecules of eicosanoid-induced angiogenesis and study the mechanisms underlying their regulation of expression in HMVEC and vascular smooth muscle cells. The results of this proposal will provide novel information on the identification of specific angiogenic eicosanoids and on elucidation of the underlying mechanisms by which these lipid molecules stimulate angiogenesis. Such knowledge, in turn, could be useful in developing therapeutics in the prevention of progression of diseases such as atherosclerosis.
Showing the most recent 10 out of 16 publications