A significant role for increased platelet reactivity in the pathophysiology of occlusive arterial thrombosis is widely recognized. However, the mechanisms responsible for enhancing platelet reactivity in vivo during hyperlipidemia are poorly understood. We have recently isolated and structurally defined a novel family of oxidized choline glycerophospholipids (oxPCCD36) that are present in vivo at sites of enhanced oxidative stress. oxPCCD36 serve as high affinity ligands for scavenger receptors class B and modulate platelet reactivity and thrombosis in oxidative stress. Our preliminary studies demonstrated that a class of products formed as a result of degradation of oxPCCD36 by PLA2 (carboxyalkylpyrolle protein adducts) is a new and powerful platelet agonist, however, the receptors mediating its effect are not known. Platelets express a number of receptors with pattern recognition properties, including several toll like receptors (TLRs). A recent study suggested that platelet TLRs may modulate thrombosis when their ligands are present in circulation. This proposal will address the hypothesis that platelet TLRs alone, or in cooperation with scavenger receptors modulate platelet reactivity and prothrombotic state induced by endogenous ligands generated in oxidative stress. This proposal will also pursue the hypothesis that carboxyalkylpyrolle protein adducts serve as novel ligands for platelet scavenger /toll like receptors and identify the mechanisms of prothrombotic activity. Finally, we will continue the investigation of the molecular mechanism of scavenger receptor BI regulation of platelet function and thrombosis in dyslipidemia. Our preliminary data strongly support our hypothesis.
The Specific Aims are:
Aim1 : To assess whether the platelet activating and prothrombotic activities of oxPCCD36 are mediated by platelet TLRs alone, or in cooperation with scavenger receptors class B.
Aim2 : To investigate the role of scavenger receptor-BI in platelet function in dyslipidemia and oxidative stress.
Aim3 : To elucidate the mechanism and assess the physiological and pathophysiological consequences of the interaction between carboxyalkylpyrolle protein adducts (CAPs) and platelets.
Risk for platelet-mediated blood clotting is increased in atherosclerotic disease; however, the mechanisms are poorly understood. We have recently demonstrated that specific oxidized phospholipids can control platelet function via platelet receptors. In this proposal we will study how platelet toll like receptors regulate platelet function and thrombosis in atherosclerosis.
Showing the most recent 10 out of 29 publications