Sepsis is a catastrophic systemic inflammatory response to infection. Despite intense study, few therapeutic strategies other than nonspecific supportive care have been developed and death rates remain as high as 60- 70% in cases of septic shock. Approximately 750,000 Americans contract sepsis each year and more than 90% of these cases are due to bacterial infections that trigger inflammation, vascular leak, edema, organ failure, and death. Our long-term challenge is to find an effective therapy for bacterial sepsis. It is known that inflammatory cytokines and pathogen-associated molecular patterns (PAMPs) induce the vascular instability and edema that trigger septic pathophysiology. Our preliminary data suggest that the direct, immediate, and disruptive effects of various cytokines and PAMPs on the vascular barrier are mediated by cognate receptors that signal via a common convergence point, the intracellular GTPase ARF6. This convergence point controls trafficking of cell-cell junction proteins and is distinct from the canonical transcriptional pathwys that activate the immune response (e.g., those activating NF-kappaB). Many bacterial PAMPs signal through toll-like receptors (TLRs), and PAMP/TLR signaling is thought to play a crucial role in sepsis. We hypothesize that inhibiting ARF6 will offer a platform for treating sepsis by enhancing the resilience of the vascular system to PAMP/TLR signaling without further compromising the immune system. We will test this hypothesis by pursuing three aims.
In Aim 1, we will identify the upstream molecular components that activate ARF6 in PAMP/TLR signaling. The ARF family of GTPases is activated by guanine nucleotide exchange factors (GEFs) known as ARF-GEFs, and we have shown that during cytokine activation, adapter proteins that link the receptor to the ARF-GEF are required for ARF6 activation. Therefore, we will identify which adapter proteins and ARF-GEFs are required for PAMP/TLR activation of ARF6 and determine whether these proteins are required for the induction of endothelial permeability.
In Aim 2, we determine how PAMP/TLR-activated ARF6 functions to increase endothelial permeability. We have shown that in cytokine signaling, activated ARF6 induces endothelial permeability by reducing VE-cadherin levels at the cell surface, thus disrupting the adherens junctions that hold endothelial cells together. In this aim, we will determine whether PAMP/TLR activation of ARF6 likewise disrupts adherens junctions and will identify the direct effectors of ARF6 activation.
In Aim 3, we will definitively determine whether the endothelial expression of Arf6 is required for pathologic vascular leak, organ failure, and death in three different mouse models of bacterial sepsis. We will also determine whether blocking ARF6 function by peptide or small molecule inhibitors can reduce vascular leak, organ failure, and mortality rates in these models of sepsis. The successful completion of these aims will elucidate the role ARF6 plays in bacterial sepsis and will dictate whether ARF6 is a promising target for developing drugs that can treat bacterial sepsis.
Sepsis is a catastrophic and often-fatal inflammatory response to infection that affects the entire body and usually results from bacterial infections. Despite intense study, few therapeutic strategies other than nonspecific supportive care have been developed and death rates remain as high as 60-70% in patients with the most severe form of sepsis. We have identified a signaling pathway that we think may control the most lethal aspects of bacterial sepsis and propose to examine this pathway in detail, determine the pathway's in vivo relevance in bacterial sepsis, and assess the potential value of developing drugs to treat sepsis that target this pathway.
Middleton, Elizabeth A; Rondina, Matthew T; Schwertz, Hansjorg et al. (2018) Amicus or Adversary Revisited: Platelets in Acute Lung Injury and Acute Respiratory Distress Syndrome. Am J Respir Cell Mol Biol 59:18-35 |
Zhu, Weiquan; Shi, Dallas S; Winter, Jacob M et al. (2017) Small GTPase ARF6 controls VEGFR2 trafficking and signaling in diabetic retinopathy. J Clin Invest 127:4569-4582 |
Yoo, Jae Hyuk; Shi, Dallas S; Grossmann, Allie H et al. (2016) ARF6 Is an Actionable Node that Orchestrates Oncogenic GNAQ Signaling in Uveal Melanoma. Cancer Cell 29:889-904 |
Gibson, Christopher C; Davis, Chadwick T; Zhu, Weiquan et al. (2015) Dietary Vitamin D and Its Metabolites Non-Genomically Stabilize the Endothelium. PLoS One 10:e0140370 |
Gibson, Christopher C; Zhu, Weiquan; Davis, Chadwick T et al. (2015) Strategy for identifying repurposed drugs for the treatment of cerebral cavernous malformation. Circulation 131:289-99 |
Davis, Chadwick T; Zhu, Weiquan; Gibson, Christopher C et al. (2014) ARF6 inhibition stabilizes the vasculature and enhances survival during endotoxic shock. J Immunol 192:6045-52 |
Yu, Jinlong; Zhang, Xuefeng; Kuzontkoski, Paula M et al. (2014) Slit2N and Robo4 regulate lymphangiogenesis through the VEGF-C/VEGFR-3 pathway. Cell Commun Signal 12:25 |
Grossmann, Allie H; Yoo, Jae Hyuk; Clancy, James et al. (2013) The small GTPase ARF6 stimulates ?-catenin transcriptional activity during WNT5A-mediated melanoma invasion and metastasis. Sci Signal 6:ra14 |
Larrieu-Lahargue, Frederic; Thomas, Kirk R; Li, Dean Y (2012) Netrin ligands and receptors: lessons from neurons to the endothelium. Trends Cardiovasc Med 22:44-7 |
Frech, Tracy M; Revelo, Monica P; Drakos, Stavros G et al. (2012) Vascular leak is a central feature in the pathogenesis of systemic sclerosis. J Rheumatol 39:1385-91 |
Showing the most recent 10 out of 37 publications