The long-term objective of this project is to understand, not only the structure and function of the vitamin K epoxide reductase (VKOR), but also the vitamin K cycle as a whole. Vitamin K-dependent carboxylation is an essential post-translational modification for proteins important in several physiologic functions, including blood coagulation and bone metabolism. VKOR is the target of warfarin, the most widely prescribed anti-coagulant for thromboembolic disorders. Although estimated to prevent twenty strokes per induced bleeding episode, warfarin is still under-utilized because of fear of bleeding. It is hoped that research funded by this grant will lead to improved anti- thrombotic therapies that will avoid some of the problems related to warfarin treatment. Specifically, we propose to accomplish the following during the tenure of this grant: (1) using standard purification and enzyme assay methods, RNAi technologies, and modified expression cloning, we will investigate the vitamin K cycle to identify components other than the vitamin K epoxide reductase (VKOR) necessary for the production of vitamin K hydroquinone, (2) employing electron crystallography, biochemical and molecular biological techniques, conduct studies to elucidate the three- dimensional structure of VKOR, and (3) using both in vivo and in vitro methods investigate the structural characteristics necessary for VKOR.

Public Health Relevance

In addition to development of new ways of controlling thromboses, knowledge gained from our research on the vitamin K cycle should give insight into the vitamin's apparently major role in bone formation. While the contribution to bone metabolism is clear, it is still controversial whether vitamin K is useful in treating or slowing progression of bone density loss in osteoporosis. Another developing area relevant to public health is the role of coagulation/thrombosis in cancer, and in turn whether vitamin K and its antagonists have a place in cancer treatment.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL077740-10
Application #
8645680
Study Section
Hemostasis and Thrombosis Study Section (HT)
Program Officer
Link, Rebecca P
Project Start
2004-07-01
Project End
2015-03-31
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
10
Fiscal Year
2014
Total Cost
$379,555
Indirect Cost
$123,099
Name
University of North Carolina Chapel Hill
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Tie, J-K; Stafford, D W (2016) Structural and functional insights into enzymes of the vitamin K cycle. J Thromb Haemost 14:236-47
Jin, Da-Yun; Vermeer, Cees; Stafford, Darrel W et al. (2016) Splice-Site Mutation of Exon 3 Deletion in the Gamma-Glutamyl Carboxylase Gene Causes Inactivation of the Enzyme. J Invest Dermatol 136:2314-2317
Tie, Jian-Ke; Carneiro, Jorge D A; Jin, Da-Yun et al. (2016) Characterization of vitamin K-dependent carboxylase mutations that cause bleeding and nonbleeding disorders. Blood 127:1847-55
Wu, S; Tie, J-K; Stafford, D W et al. (2014) Membrane topology for human vitamin K epoxide reductase. J Thromb Haemost 12:112-4
Tie, Jian-Ke; Jin, Da-Yun; Stafford, Darrel W (2014) Conserved loop cysteines of vitamin K epoxide reductase complex subunit 1-like 1 (VKORC1L1) are involved in its active site regeneration. J Biol Chem 289:9396-407
Ingram, Brian O; Turbyfill, Jared L; Bledsoe, Peggy J et al. (2013) Assessment of the contribution of NAD(P)H-dependent quinone oxidoreductase 1 (NQO1) to the reduction of vitamin K in wild-type and NQO1-deficient mice. Biochem J 456:47-54
Tie, J-K; Jin, D-Y; Tie, K et al. (2013) Evaluation of warfarin resistance using transcription activator-like effector nucleases-mediated vitamin K epoxide reductase knockout HEK293 cells. J Thromb Haemost 11:1556-64
Tie, Jian-Ke; Jin, Da-Yun; Stafford, Darrel W (2012) Human vitamin K epoxide reductase and its bacterial homologue have different membrane topologies and reaction mechanisms. J Biol Chem 287:33945-55
Tie, Jian-Ke; Jin, Da-Yun; Stafford, Darrel W (2012) Mycobacterium tuberculosis vitamin K epoxide reductase homologue supports vitamin K-dependent carboxylation in mammalian cells. Antioxid Redox Signal 16:329-38
Wu, Sangwook; Liu, Shubin; Davis, Charles H et al. (2011) A hetero-dimer model for concerted action of vitamin K carboxylase and vitamin K reductase in vitamin K cycle. J Theor Biol 279:143-9

Showing the most recent 10 out of 13 publications