The death receptor Fas plays a critical role in the regulation of apoptosis. Activation of the Fas pathway causes apoptosis of lung epithelial cells, and Fas-induced apoptosis in these cells is sufficient to trigger the subsequent development of fibrosis. During the current funding period of this grant, we made the exciting novel observation that the Fas death pathway is redox regulated via the glutaredoxin/S-glutathionylation redox couple. Upon ligation of Fas, the thiol repair enzyme, glutaredoxin-1 (Grx1) is rapidly degraded via caspase 8/3, which causes increases in S-glutathionylation of Fas at Cysteine 294. S-glutathionylation of Fas promotes its recruitment into lipid rafts, and enhances binding of FasL, caspase activation and apoptosis, providing a feed forward amplification loop to enhance the strength of the apoptotic signal. Primary lung epithelial cells or fibroblasts that lack Grx1 display more S-glutathionylation of Fas and have enhanced caspase activity and FasL-induced apoptosis. Conversely, overexpression of Grx1 decreases S-glutathionylation of Fas and dampens FasL-induced caspase activation and apoptosis. These exciting new observations raise the intriguing possibility that the glutaredoxin/S-glutathionylation redox system also impact the extent of collagen deposition in the lung by controlling the extent of apoptosis in lung epithelial cells. The hypothesis of the current proposal is that increases in S-glutathionylation that occur as a result of caspase-dependent degradation of Grx1 play a causal role in apoptosis of epithelial cells and the subsequent development of pulmonary fibrosis, and that S-glutathionylation of Fas is a critical target in this process. We also speculate that augmentation of Grx1 in lung epithelium by reversing the increases in S-glutathionylation attenuates epithelial apoptosis, and dampens subsequent fibrogenesis.
In Specific Aim 1, we will elucidate the molecular basis of S-glutathionylation of Fas, and the mechanism whereby it strengthens the pro-apoptotic function of Fas.
In Specific Aim 2, we will determine whether patterns of S-glutathionylation and S-glutathionylation of Fas are increased in mouse models of fibrosis and patients with fibrotic lung disease.
In Specific Aim 3, we will determine whether mice that lack Grx1 systemically or in airway epithelium have an enhanced susceptibility to the development of pulmonary fibrosis, in association with increases in S-glutathionylation of Fas and caspase activation. We will address the requirement of Fas in the enhanced susceptibility to fibrogenesis.
In Specific Aim 4, we will address whether transgenic expression of Grx1 in lung epithelial cells confers protection against the development of fibrosis. Completion of the specific aims of this renewal application will provide important new information about the role of a recently discovered redox couple, glutaredoxin/S-glutathionylation in the development of pulmonary fibrosis.
Epithelial cells that line the airways (breathing tubes) play an important role in the defense against inhaled materials, and are important in maintaining normal lung function. However, our laboratories have identified that epithelial cells play a negative role in promoting stiffening of the lung tissue, thereby decreasing lung function. We have identified some critical oxidative signals that promote this possibly negative event, by causing death of the epithelial cells, and prevent the normal repair process. This grant proposal has four specific aims to test the importance of these biochemical signals in lung stiffening, and will use both primary cell cultures from mouse airways, cell lines, and the construction of genetically altered mice. Completion of this project will provide new insights into the process of lung stiffening, and may lead to the development of new therapeutics to limit lung stiffening, and also potentially reverse this process.
Showing the most recent 10 out of 29 publications