The only FDA-approved treatment for stroke is tPA, but it is used in <5% of stroke victims. Reasons for its limited use include severe, time-dependent, adverse effects, especially brain swelling, edema and hemorrhagic transformation (HT). tPA-triggered matrix metalloproteinase (MMP-9/2) activity is responsible for adverse effects, but our understanding is still incomplete, especially as regards upstream mechanisms responsible for tPA-induced activation and/or release of MMPs. The previous cycle of this grant established that the novel SUR1-regulated NCCa-ATP channel (hereinafter called the SUR1/TRPM4 channel) plays a critical role in edema, lesion expansion and cell death following brain ischemia. New preliminary data for this proposal, obtained with a severe ischemia/reperfusion models (6-h MCAo/48 h reperfusion) associated with high mortality, show that tPA exerts no protective effect when administered at 6 h, but that co-administration of glibenclamide with tPA at 6 h significantly reduces mortality and HT. Also, a completely novel finding is that tPA directly opens the SUR1/TRPM4 channel in brain microvascular endothelial cells, resulting in release of activated MMP-9/2 from cells undergoing oncotic lysis due to channel opening, and this effect of tPA is blocked by glibenclamide. This discovery suggests that the SUR1/TRPM4 channel may be a critical upstream regulator of MMP-9/2 release, and it may explain the strong protective effect of glibenclamide when administered with tPA. In this proposal, we will expand upon these novel preliminary data to consolidate our findings, establish the molecular pathway linking the channel with tPA-induced adverse effects, and develop novel treatment strategies to render tPA safer and more widely usable in patients with stroke. We will examine the hypotheses that: (i) preventing release of MMP-9/2 by inhibiting the SUR1/TRPM4 channel is superior to directly inhibiting MMP-9/2 after it is released;(ii) tPA-induced opening of the SUR1/TRPM4 channel in microvascular endothelium is due to signaling that involves protein kinase C phosphorylation of TRPM4, the pore- forming subunit of the channel;(iii) hypertension, an important risk factor for tPA-associated complications, is a risk factor because it results in NFkappaB-mediated upregulation of SUR1/TRPM4 channels.
In Specific Aims (SA) 1, using a rat model of severe ischemia/reperfusion injury, we will compare SUR1/TRPM4 channel inhibition using gene suppression and pharmacological strategies vs. direct MMP-inhibition on short-term and long-term sequelae. In SA2, we will characterize the molecular mechanism by which tPA opens SUR1/TRPM4 channels. In SA3, we will characterize the role of the transcription factor, NFkappaB, in predisposing to HT due to upregulation of the SUR1/TRPM4 channel. Demonstrating these concepts will advance our understanding of the fundamental cellular biology of stroke, and is anticipated to bring forth pharmaceutical treatments that will extend the treatment window and safety of tPA.

Public Health Relevance

tPA, the only FDA-approved treatment for stroke, is grossly underutilized in part because of severe adverse effects associated with delayed administration. In preliminary experiments for this proposal, we discovered a novel molecular mechanism involving direct activation of the SUR1/TRPM4 channel that accounts for tPA's adverse effects. The experiments in this proposal will expand upon these novel preliminary data to consolidate our findings, establish the molecular pathway linking the channel with tPA-induced adverse effects, and develop novel treatment strategies to render tPA safer and more widely usable in patients with stroke.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL082517-09
Application #
8598491
Study Section
Brain Injury and Neurovascular Pathologies Study Section (BINP)
Program Officer
Kindzelski, Andrei L
Project Start
2006-01-19
Project End
2015-12-31
Budget Start
2014-01-01
Budget End
2014-12-31
Support Year
9
Fiscal Year
2014
Total Cost
$337,500
Indirect Cost
$112,500
Name
University of Maryland Baltimore
Department
Neurosurgery
Type
Schools of Medicine
DUNS #
188435911
City
Baltimore
State
MD
Country
United States
Zip Code
21201
Sheth, Kevin N; Petersen, Nils H; Cheung, Ken et al. (2018) Long-Term Outcomes in Patients Aged ?70 Years With Intravenous Glyburide From the Phase II GAMES-RP Study of Large Hemispheric Infarction: An Exploratory Analysis. Stroke 49:1457-1463
Schreibman, David L; Hong, Caron M; Keledjian, Kaspar et al. (2018) Mannitol and Hypertonic Saline Reduce Swelling and Modulate Inflammatory Markers in a Rat Model of Intracerebral Hemorrhage. Neurocrit Care 29:253-263
King, Zachary A; Sheth, Kevin N; Kimberly, W Taylor et al. (2018) Profile of intravenous glyburide for the prevention of cerebral edema following large hemispheric infarction: evidence to date. Drug Des Devel Ther 12:2539-2552
Stokum, Jesse A; Kwon, Min S; Woo, Seung K et al. (2018) SUR1-TRPM4 and AQP4 form a heteromultimeric complex that amplifies ion/water osmotic coupling and drives astrocyte swelling. Glia 66:108-125
Gerzanich, Volodymyr; Kwon, Min Seong; Woo, Seung Kyoon et al. (2018) SUR1-TRPM4 channel activation and phasic secretion of MMP-9 induced by tPA in brain endothelial cells. PLoS One 13:e0195526
Hayman, Erik G; Wessell, Aaron; Gerzanich, Volodymyr et al. (2017) Mechanisms of Global Cerebral Edema Formation in Aneurysmal Subarachnoid Hemorrhage. Neurocrit Care 26:301-310
Grunwald, Zachary; Beslow, Lauren A; Urday, Sebastian et al. (2017) Perihematomal Edema Expansion Rates and Patient Outcomes in Deep and Lobar Intracerebral Hemorrhage. Neurocrit Care 26:205-212
Hayman, Erik G; Patel, Akil P; James, Robert F et al. (2017) Heparin and Heparin-Derivatives in Post-Subarachnoid Hemorrhage Brain Injury: A Multimodal Therapy for a Multimodal Disease. Molecules 22:
Iqbal, Sana; Hayman, Erik G; Hong, Caron et al. (2016) Inducible nitric oxide synthase (NOS-2) in subarachnoid hemorrhage: Regulatory mechanisms and therapeutic implications. Brain Circ 2:8-19
Urday, Sebastian; Beslow, Lauren A; Dai, Feng et al. (2016) Rate of Perihematomal Edema Expansion Predicts Outcome After Intracerebral Hemorrhage. Crit Care Med 44:790-7

Showing the most recent 10 out of 68 publications