Myocardial ischemia, infarction, and heart failure constitute a disease spectrum which is rapidly becoming one of the foremost global health challenges. Current therapies focus upon pharmacologic optimization and macrorevascularization via PCI and CABG. Reconstructive and replacement therapies are limited in applicability or availability. A significant unmet need is that of microrevascularizatio. Repeated studies have demonstrated survival advantage in patients with robust collateralization. Thus the presence of endogenous revascularization and repair mechanisms exist and the benefits are clear; but the native potency is generally inadequate. In the initial funding period, we studied the primary effectors of endogenous microrevascularization, endothelial progenitor stem cells (EPC) and their potent chemokine stromal cell derived factor 1-alpha(SDF). We were able to significantly augment microvascular angiogenesis and improve local tissue biomechanical properties, ventricular geometry and cardiac function after myocardial ischemic injury. Via computational protein engineering, we then designed and synthesized a supra-efficient SDF analog as well as constructed a tissue engineered EPC extracellular-matrix simulating scaffold as an EPC delivery system that enhanced cell retention and survival. Elements of our work have been upscaled into a preclinical sheep model and also translated into a recently initiated human clinical trial at our institution. In this revised renewl application we propose to study in further depth the specific interactive mechanisms underlying SDF-mediated EPC neovasculogenesis, develop novel, cytokine and cell delivery platforms, and advance a potential therapeutic sustained release cytokine strategy in our preclinical sheep model.
Specific Aim 1 will focus on elucidating mechanistic insights via a novel cardiac-specific SDF conditional knockout mouse, eGFP marrow reconstitution and EPC tracking, and optical fluorescence quantification of cellular level perfusion and biomechanical alterations.
Specific Aim 2 will develop an innovative sustained release cytokine hydrogel composite and a unique smooth muscle cell-EPC bilevel cell sheet to deliver biologically supported EPCs to the heart.
Specific Aim 3 will transition the hydrogel cytokine therapeutic strategy into a preclinical sheep model in a minimally invasive operative approach. We have generated the preliminary scientific components and assembled the team expertise to hopefully successfully achieve these goals.

Public Health Relevance

Myocardial ischemic injury, in all of its forms, from massive heart attack to mild chronic heart injury, has become a tremendous world health problem. Current treatments reopen or bypass large blood vessels in the heart but fail to address a fundamental determinant of long-term benefit, the availability of small, microvessels to deliver oxygen and nutrients to the heart muscle---imagine driving in a country with abundant superhighways but no local roads to take you your final destination. We have developed techniques to stimulate the body's natural stem cells to build these microvessels into injured regions of the heart and propose in this application to study in further depth how these cells work, how to increase the cell's efficiency, and how to prepare this treatment for human clinical use.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL089315-08
Application #
8847767
Study Section
Bioengineering, Technology and Surgical Sciences Study Section (BTSS)
Program Officer
Adhikari, Bishow B
Project Start
2007-07-01
Project End
2019-06-30
Budget Start
2015-07-01
Budget End
2016-06-30
Support Year
8
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Stanford University
Department
Surgery
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94304
Goldstone, Andrew B; Burnett, Cassandra E; Cohen, Jeffery E et al. (2018) SDF 1-alpha Attenuates Myocardial Injury Without Altering the Direct Contribution of Circulating Cells. J Cardiovasc Transl Res 11:274-284
Ingason, Arnar B; Goldstone, Andrew B; Paulsen, Michael J et al. (2018) Angiogenesis precedes cardiomyocyte migration in regenerating mammalian hearts. J Thorac Cardiovasc Surg 155:1118-1127.e1
von Bornstädt, Daniel; Wang, Hanjay; Paulsen, Michael J et al. (2018) Rapid Self-Assembly of Bioengineered Cardiovascular Bypass Grafts From Scaffold-Stabilized, Tubular Bilevel Cell Sheets. Circulation 138:2130-2144
Shudo, Yasuhiro; Goldstone, Andrew B; Cohen, Jeffrey E et al. (2017) Layered smooth muscle cell-endothelial progenitor cell sheets derived from the bone marrow augment postinfarction ventricular function. J Thorac Cardiovasc Surg 154:955-963
Mirabella, T; MacArthur, J W; Cheng, D et al. (2017) 3D-printed vascular networks direct therapeutic angiogenesis in ischaemia. Nat Biomed Eng 1:
Steele, Amanda N; MacArthur, John W; Woo, Y Joseph (2017) Stem Cell Therapy: Healing or Hype? Why Stem Cell Delivery Doesn't Work. Circ Res 120:1868-1870
Kawamura, Masashi; Paulsen, Michael J; Goldstone, Andrew B et al. (2017) Tissue-engineered smooth muscle cell and endothelial progenitor cell bi-level cell sheets prevent progression of cardiac dysfunction, microvascular dysfunction, and interstitial fibrosis in a rodent model of type 1 diabetes-induced cardiomyopathy. Cardiovasc Diabetol 16:142
Steele, Amanda N; Cai, Lei; Truong, Vi N et al. (2017) A novel protein-engineered hepatocyte growth factor analog released via a shear-thinning injectable hydrogel enhances post-infarction ventricular function. Biotechnol Bioeng 114:2379-2389
Cohen, Jeffrey E; Goldstone, Andrew B; Paulsen, Michael J et al. (2017) An innovative biologic system for photon-powered myocardium in the ischemic heart. Sci Adv 3:e1603078
Hou, Luqia; Kim, Joseph J; Woo, Y Joseph et al. (2016) Stem cell-based therapies to promote angiogenesis in ischemic cardiovascular disease. Am J Physiol Heart Circ Physiol 310:H455-65

Showing the most recent 10 out of 31 publications