The functioning of neuronal circuits in the cerebral cortex underlies our highest cognitive and perceptual abilities, yet the rules underlying the formation of specific connections among cortical neurons are largely unknown. During development, proliferating cells of the cortical neuroepithelium generate young neurons that migrate away from their site of origin into distinct positions within the cortex, where they assemble into the layers and columns that form the structural basis of cortical processing. Defects in the production and migration of cerebral cortical neurons have fundamental implications for mental health, particularly since migration disorders have been implicated in schizophrenia and bipolar affective illness. The goal of this research is to explore the cellular and molecular processes by which neural progenitor cells in the mammalian cerebral cortex produce young neurons, and to study how these neurons migrate to appropriate positions within the brain. Five specific issues are under study: 1) Which cytoskeletal elements support interkinetic nuclear migration during the cell cycle? We will first characterize the cytoskeletal elements that underlie this intracellular movement, then test the effects of disrupting nuclear movements on the ability of cells to make phenotypic commitments. 2) What are the patterns of cell division that produce young cortical neurons? We propose to image directly patterns of cell division in the ventricular zone using time-lapse confocal microscopy to determine whether cell divisions are symmetric or asymmetric. 3) What are the pathways for neuronal migration in the developing cerebral cortex? Time-lapse imaging techniques will be used to characterize the diversity of migratory pathways in slices through the developing cortex. 4) What are the cellular substrates for migration in the radial and orthogonal (tangential) domains? We will explore a range of possible substrates for both radial and nonradical migration, using electron microscopy and immunohistochemical techniques. 5) What molecules are required for migratory movements in the radial and orthogonal domains? We will characterize the molecular basis of neuronal migration in the radial and orthogonal domains through the use of function-blocking antibodies (to molecules such as Beta1-integrin, L1, and NCAM) and time-lapse imaging techniques. The results of these experiments will provide us with information about the cellular and molecular mechanisms of neurogenesis and neuronal migration in the developing cerebral cortex. Such studies of normal development are likely to provide important insights into the ontogeny of developmental brain disorders in human, and ultimately to generate strategies for the appropriate treatment of such disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
5R01MH051864-02
Application #
2251332
Study Section
Molecular, Cellular, and Developmental Neurobiology Review Committee (MCDN)
Project Start
1994-08-01
Project End
1997-07-31
Budget Start
1995-08-01
Budget End
1996-07-31
Support Year
2
Fiscal Year
1995
Total Cost
Indirect Cost
Name
Stanford University
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
800771545
City
Stanford
State
CA
Country
United States
Zip Code
94305
Notwell, James H; Heavner, Whitney E; Darbandi, Siavash Fazel et al. (2016) TBR1 regulates autism risk genes in the developing neocortex. Genome Res 26:1013-22
Leone, Dino P; Heavner, Whitney E; Ferenczi, Emily A et al. (2015) Satb2 Regulates the Differentiation of Both Callosal and Subcerebral Projection Neurons in the Developing Cerebral Cortex. Cereb Cortex 25:3406-19
Wilson, Sandra L; Wilson, John P; Wang, Chengbing et al. (2012) Primary cilia and Gli3 activity regulate cerebral cortical size. Dev Neurobiol 72:1196-212
Shieh, Jennifer C; Schaar, Bruce T; Srinivasan, Karpagam et al. (2011) Endocytosis regulates cell soma translocation and the distribution of adhesion proteins in migrating neurons. PLoS One 6:e17802
Leone, Dino P; Srinivasan, Karpagam; Brakebusch, Cord et al. (2010) The rho GTPase Rac1 is required for proliferation and survival of progenitors in the developing forebrain. Dev Neurobiol 70:659-78
Srinivasan, Karpagam; Roosa, Jason; Olsen, Olav et al. (2008) MALS-3 regulates polarity and early neurogenesis in the developing cerebral cortex. Development 135:1781-90
Ohtsuka, Toshiyuki; Imayoshi, Itaru; Shimojo, Hiromi et al. (2006) Visualization of embryonic neural stem cells using Hes promoters in transgenic mice. Mol Cell Neurosci 31:109-22
Schaar, Bruce T; Kinoshita, Kazuhisa; McConnell, Susan K (2004) Doublecortin microtubule affinity is regulated by a balance of kinase and phosphatase activity at the leading edge of migrating neurons. Neuron 41:203-13
Hebert, Jean M; Lin, Mary; Partanen, Juha et al. (2003) FGF signaling through FGFR1 is required for olfactory bulb morphogenesis. Development 130:1101-11
Hebert, Jean M; Mishina, Yuji; McConnell, Susan K (2002) BMP signaling is required locally to pattern the dorsal telencephalic midline. Neuron 35:1029-41

Showing the most recent 10 out of 19 publications