Communication between neurons relies on the release of neurotransmitters from pre-synaptic nerve terminals. Release is triggered by increases in intracellular [Ca2+] and is mediated by the fusion of transmitter-filled synaptic vesicles with the plasma membrane. The molecular mechanism that couples Ca2+ to exocytosis is not known. Synaptotagmin is a Ca2+ binding protein that has been proposed to function as a Ca2+ sensor that triggers release. We propose to examine the function of this protein, primarily on its two putative Ca2+-sensing domains, C2A and C2B. The structure and Ca2+-binding properties of the C2A-domain have been previously studied in detail. However, little is known concerning the function of the C2B-domain. We hypothesize that C2B is a Ca2+-sensing module that plays a critical role in Ca2+-triggered exocytosis. Support for this hypothesis is provided by preliminary data indicating that C2B must bind Ca2+, change conformation and oligomerize in order for docked synaptic vesicles to fuse in response to stimulation in vivo. To determine how C2B functions in exocytosis, three Specific Aims are proposed. (1) A series of biochemical studies will examine the kinetics of Ca2+-C2B interactions, the Ca2+ requirements for synaptotagmin oligomerization, and the role of C2B in the facilitation of SNARE complex assembly. (2) Time resolved amperometry, as well as genetic manipulations of Drosophila, will be used to address the role of C2B in fusion pore dynamics and in excitation-secretion coupling. A critical preliminary finding is that synaptotagmin regulates the opening and dilation kinetics of fusion pores, placing synaptotagmin at the final stages of the fusion reaction that is mediated by SNAREs. This finding supports the hypothesis that synaptotagmins and SNAREs are constituents of Ca2+-regulated exocytotic fusion pores. (3) Biochemical studies will be carried out to determine the subunit stoichiometry of this complex, its morphology, and the interfaces that mediate its assembly. The ability of the release machinery to respond to Ca2+ is subject to modulation and is likely to comprise an important locus for synaptic plasticity. Thus, a better understanding of the release process will provide insights into novel modes of synaptic plasticity and should ultimately provide targets for the treatment of diseases in which synaptic transmission is impaired.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
5R01MH061876-04
Application #
6861062
Study Section
Special Emphasis Panel (ZRG1-MDCN-1 (01))
Program Officer
Asanuma, Chiiko
Project Start
2002-03-01
Project End
2007-08-31
Budget Start
2005-03-01
Budget End
2007-08-31
Support Year
4
Fiscal Year
2005
Total Cost
$245,178
Indirect Cost
Name
University of Wisconsin Madison
Department
Physiology
Type
Schools of Medicine
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Bao, Huan; Das, Debasis; Courtney, Nicholas A et al. (2018) Dynamics and number of trans-SNARE complexes determine nascent fusion pore properties. Nature 554:260-263
Chapman, Edwin R (2018) A Ca2+ Sensor for Exocytosis. Trends Neurosci 41:327-330
Xue, Renhao; Ruhl, David A; Briguglio, Joseph S et al. (2018) Doc2-mediated superpriming supports synaptic augmentation. Proc Natl Acad Sci U S A 115:E5605-E5613
Courtney, Nicholas A; Briguglio, Joseph S; Bradberry, Mazdak M et al. (2018) Excitatory and Inhibitory Neurons Utilize Different Ca2+ Sensors and Sources to Regulate Spontaneous Release. Neuron 98:977-991.e5
Bendahmane, Mounir; Bohannon, Kevin P; Bradberry, Mazdak M et al. (2018) The synaptotagmin C2B domain calcium-binding loops modulate the rate of fusion pore expansion. Mol Biol Cell :
Rao, Tejeshwar C; Santana Rodriguez, Zuleirys; Bradberry, Mazdak M et al. (2017) Synaptotagmin isoforms confer distinct activation kinetics and dynamics to chromaffin cell granules. J Gen Physiol 149:763-780
Zurawski, Zack; Page, Brian; Chicka, Michael C et al. (2017) G?? directly modulates vesicle fusion by competing with synaptotagmin for binding to neuronal SNARE proteins embedded in membranes. J Biol Chem 292:12165-12177
Ugur, Berrak; Bao, Huan; Stawarski, Michal et al. (2017) The Krebs Cycle Enzyme Isocitrate Dehydrogenase 3A Couples Mitochondrial Metabolism to Synaptic Transmission. Cell Rep 21:3794-3806
Hanna 4th, Michael G; Mela, Ioanna; Wang, Lei et al. (2016) Sar1 GTPase Activity Is Regulated by Membrane Curvature. J Biol Chem 291:1014-27
McVicker, Derrick P; Awe, Adam M; Richters, Karl E et al. (2016) Transport of a kinesin-cargo pair along microtubules into dendritic spines undergoing synaptic plasticity. Nat Commun 7:12741

Showing the most recent 10 out of 86 publications