Neurobehavioral Family Study of Schizophrenia is a Multiplex Multigenerational Investigation (MGI) of three collaborative RO1s that combine genetic and neurobiologic paradigms to advance the understanding of pathogenesis and detection of genes that modulate susceptibility to schizophrenia (SCZ). Complex genetic mechanisms underlie the susceptibility to SCZ. Paralleling the progress in genetics, neurobiologic studies have identified neural systems that could provide pathophysiologic substrates for focused investigations. We have established a sample of multigenerational multiplex families that were ascertained, phenotypically characterized and genotyped for genome-wide linkage analyses. This sample was examined with a computerized neurocognitive battery that provides complementary quantitative phenotypes to diagnosis. We observed significant heritability for several neurocognitive domains as well as evidence for linkage. Our goal for the renewal application is to capitalize on this unique sample and obtain neuroimaging phenotypes of brain structure and function with Magnetic Resonance Imaging (MRI). We will examine brain structure using volume-based morphometry and connectivity with Diffusion Tensor Imaging (DTI). Functional MRI (fMRI) studies will examine brain circuitry activated in response to neurobehavioral probes. We will follow 300 individuals from the MGI sample for neuroimaging studies. We will also ascertain a new population-based sample of 300 community controls (Specific Aim 1). We will relate the heritability of neuroimaging phenotypes to symptom and neurobehavioral measures and perform multivariate quantitative genetic analyses to identify quantitative phenotypes influenced by the same genes (Specific Aim 2). To establish genetic mechanisms producing the neurobehavioral and neuroimaging phenotypes we will localize new quantitative trait loci through genome-wide association (GWA) analyses and follow-up significant linkage and GWA analysis signals as well as candidate genes identified through ongoing association studies (Specific Aim 3). Specimens will be sent to the NIMH repository for transformation and DNA extraction. Data collection and quality control will be maintained and verified data will be regularly uploaded to the NIMH repository (Specific Aim 4). The MGI augments other samples available with similar measures to confirm and extend present findings. In addition, the phenotypic characterization of participants with neurobehavioral and neuroimaging data will enable evaluation of the relation between genetic influences on neurobiological abnormalities and clinical manifestations. Finding additional potential quantitative markers for genetic vulnerability could improve our understanding of how genes related to brain development and regulation interact with environment in conferring SCZ susceptibility. Such efforts will enhance the integration of neurobiologic and genetic paradigms in human and animal research. In turn, this may pave the way for risk prediction and better treatment.

Public Health Relevance

Schizophrenia is a complex brain disorder that commonly emerges in adolescence and early adulthood and has devastating effects on the individual and family. Understanding the genetic basis of the deficits in brain function is key to early detection and to advance treatments that may improve outcome. The goal of the Multiplex Multigenerational Investigation of the schizophrenia consortium is to integrate neurobehavioral and neuroimaging methods in high-risk families that will yield the data needed for progress in the field.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
5R01MH063480-10
Application #
8304124
Study Section
Special Emphasis Panel (ZRG1-HOP-V (60))
Program Officer
Senthil, Geetha
Project Start
2001-07-24
Project End
2014-05-31
Budget Start
2012-06-01
Budget End
2014-05-31
Support Year
10
Fiscal Year
2012
Total Cost
$678,891
Indirect Cost
$230,778
Name
University of Pittsburgh
Department
Psychiatry
Type
Schools of Medicine
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Prasad, Konasale M; Chowdari, Kodavali V; D'Aiuto, Leonardo A et al. (2018) Neuropil contraction in relation to Complement C4 gene copy numbers in independent cohorts of adolescent-onset and young adult-onset schizophrenia patients-a pilot study. Transl Psychiatry 8:134
Bhatia, Triptish; Wood, Joel; Iyengar, Satish et al. (2018) Emotion discrimination in humans: Its association with HSV-1 infection and its improvement with antiviral treatment. Schizophr Res 193:161-167
Vanyukov, Michael M; Nimgaonkar, Vishwajit L; Kirisci, Levent et al. (2018) Association of cognitive function and liability to addiction with childhood herpesvirus infections: A prospective cohort study. Dev Psychopathol 30:143-152
Kuo, Susan S; Almasy, Laura; Gur, Ruben C et al. (2018) Cognition and community functioning in schizophrenia: The nature of the relationship. J Abnorm Psychol 127:216-227
D'Aiuto, Leonardo; McNulty, James; Hartline, Caroll et al. (2018) R430: A potent inhibitor of DNA and RNA viruses. Sci Rep 8:16662
Dimitrion, Peter; Zhi, Yun; Clayton, Dennis et al. (2017) Low-Density Neuronal Cultures from Human Induced Pluripotent Stem Cells. Mol Neuropsychiatry 3:28-36
D'Aiuto, Leonardo; Williamson, Kelly; Dimitrion, Peter et al. (2017) Comparison of three cell-based drug screening platforms for HSV-1 infection. Antiviral Res 142:136-140
Nimgaonkar, V L; Prasad, K M; Chowdari, K V et al. (2017) The complement system: a gateway to gene-environment interactions in schizophrenia pathogenesis. Mol Psychiatry 22:1554-1561
Thomas, Pramod; He, Fanyin; Mazumdar, Sati et al. (2017) Joint analysis of cognitive and circadian variation in Schizophrenia and Bipolar I Disorder. Asian J Psychiatr :
John, Jibin; Kukshal, Prachi; Bhatia, Triptish et al. (2017) Possible role of rare variants in Trace amine associated receptor 1 in schizophrenia. Schizophr Res 189:190-195

Showing the most recent 10 out of 85 publications