Loss of Fragile X Mental Retardation Protein (FMRP) causes a developmental brain disorder characterized by impaired synaptic connectivity and disrupted activity-dependent modulation in the late developing brain. Loss of FMRP is associated with a range of neurodevelopmental disorders (NDDs) with symptoms including intellectual disability, autism and childhood epilepsy. Our laboratory established the powerful Drosophila disease model and showed human FMRP displays total functional conservation in this model. We have repeatedly proven this model provides direct insights into the molecular and cellular bases of the human disease state. In this revised competitive renewal proposal, I ask for your urgently needed support to allow us to continue to take advantage of this wonderful genetic system, and relative simplicity of the learning/memory neural circuit in the Drosophila brain and its thoroughly-characterized behavioral output, to test core hypotheses regarding FMRP loss and proposed interventions to correct the resultant developmental brain defects. Experimental approaches will target the well-defined Mushroom Body (MB) circuit, a brain center receiving input from multiple sensory modalities to mediate associative learning and memory consolidation. In the first aim, we will test the hypothesis that FMRP regulates the development of the appropriate excitatory (E) vs. inhibitory (I) synaptic balance within the MB circuit. We propose genetic and pharmacological means to correct E vs. I defects independently, to assay restoration of architectural, functional and behavioral output defects in the null mutant state. We hypothesize this will be a fruitful new avenue for therapeutic intervention. In the second aim, we examine the inter-dependence of synaptic activity and FMRP function in shaping MB circuit maturation. We hypothesize that synaptic activity regulates E vs. I synapse elimination (""""""""pruning"""""""") relative to stabilization via a FMRP-dependent mechanism. We will use a combination of transgenic activity blockers (e.g. tetanus toxin) and photocurrents (e.g. light-gated ion channels) in targeted E vs. I neurons in staged developmental trials, examining outcomes in controls compared to FMRP loss and gain-of-function mutants. In parallel, we will use transgenic [Ca2+] reporters to chart activity-dependent E vs. I changes during MB circuit development. In the third aim, we tackle the role of FMRP as a translational regulator controlling development stage appropriate protein synthesis during MB circuit maturation. We propose to characterize the brain proteome over the developmental time course we have established for FMRP function. Such desperately needed developmental profiling has never before been done in any disease model. Together, these aims are designed to make maximal use of the powerful and proven Drosophila disease model. My lab is the only lab poised to pursue this work, and I truly believe we can aid enormously in providing understanding and devising treatments for this most common heritable cause of cognitive dysfunction and autism spectrum disorder.

Public Health Relevance

Loss of Fragile X Mental Retardation Protein (FMRP) causes developmental brain disorder that results in the most common heritable form of autism and intellectual disability. This revised renewal proposal continues to probe the genetic, molecular and cellular basis of this disease state in the developing brain, and directly tests therapeutic interventions aimed at correcting the brain developmental abnormalities.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
2R01MH084989-03A1
Application #
8235312
Study Section
Developmental Brain Disorders Study Section (DBD)
Program Officer
Panchision, David M
Project Start
2008-07-01
Project End
2016-11-30
Budget Start
2011-12-15
Budget End
2012-11-30
Support Year
3
Fiscal Year
2012
Total Cost
$438,391
Indirect Cost
$157,371
Name
Vanderbilt University Medical Center
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Kopke, Danielle L; Broadie, Kendal (2018) FM Dye Cycling at the Synapse: Comparing High Potassium Depolarization, Electrical and Channelrhodopsin Stimulation. J Vis Exp :
Doll, Caleb A; Vita, Dominic J; Broadie, Kendal (2017) Fragile X Mental Retardation Protein Requirements in Activity-Dependent Critical Period Neural Circuit Refinement. Curr Biol 27:2318-2330.e3
Kennedy, Tyler; Broadie, Kendal (2017) Fragile X Mental Retardation Protein Restricts Small Dye Iontophoresis Entry into Central Neurons. J Neurosci 37:9844-9858
Golovin, Randall M; Broadie, Kendal (2017) Neural Circuits: Reduced Inhibition in Fragile X Syndrome. Curr Biol 27:R298-R300
Sears, James C; Broadie, Kendal (2017) Fragile X Mental Retardation Protein Regulates Activity-Dependent Membrane Trafficking and Trans-Synaptic Signaling Mediating Synaptic Remodeling. Front Mol Neurosci 10:440
Vita, Dominic J; Broadie, Kendal (2017) ESCRT-III Membrane Trafficking Misregulation Contributes To Fragile X Syndrome Synaptic Defects. Sci Rep 7:8683
Davis, Jenna K; Broadie, Kendal (2017) Multifarious Functions of the Fragile X Mental Retardation Protein. Trends Genet 33:703-714
Dear, Mary L; Shilts, Jarrod; Broadie, Kendal (2017) Neuronal activity drives FMRP- and HSPG-dependent matrix metalloproteinase function required for rapid synaptogenesis. Sci Signal 10:
Golovin, Randall M; Broadie, Kendal (2016) Developmental experience-dependent plasticity in the first synapse of the Drosophila olfactory circuit. J Neurophysiol 116:2730-2738
Jiang, Hui; Hanna, Eriny; Gatto, Cheryl L et al. (2016) A fully automated Drosophila olfactory classical conditioning and testing system for behavioral learning and memory assessment. J Neurosci Methods 261:62-74

Showing the most recent 10 out of 27 publications