Lee, W J; Hawkins, R A; Vina, J R et al. (1998) Glutamine transport by the blood-brain barrier: a possible mechanism for nitrogen removal. Am J Physiol 274:C1101-7
|
Hawkins, P A; DeJoseph, M R; Hawkins, R A (1998) Diurnal rhythm returns to normal after elimination of portacaval shunting. Am J Physiol 274:E426-31
|
Hawkins, P A; DeJoseph, M R; Vina, J R et al. (1996) Comparison of the metabolic disturbances caused by end-to-side and side-to-side portacaval shunts. J Appl Physiol 80:885-91
|
Hawkins, P A; DeJoseph, M R; Hawkins, R A (1996) Reversal of portacaval shunting normalizes brain energy consumption in most brain structures. Am J Physiol 271:E1015-20
|
Hawkins, P A; DeJoseph, M R; Hawkins, R A (1996) Eliminating metabolic abnormalities of portacaval shunting by restoring normal liver blood flow. Am J Physiol 270:E1037-42
|
Sanchez del Pino, M M; Hawkins, R A; Peterson, D R (1995) Biochemical discrimination between luminal and abluminal enzyme and transport activities of the blood-brain barrier. J Biol Chem 270:14907-12
|
Sanchez del Pino, M M; Peterson, D R; Hawkins, R A (1995) Neutral amino acid transport characterization of isolated luminal and abluminal membranes of the blood-brain barrier. J Biol Chem 270:14913-8
|
Hawkins, R A; Mans, A M (1994) Brain metabolism in encephalopathy caused by hyperammonemia. Adv Exp Med Biol 368:11-21
|
Hawkins, R A; Jessy, J; Mans, A M et al. (1994) Neomycin reduces the intestinal production of ammonia from glutamine. Adv Exp Med Biol 368:125-34
|
Hawkins, R A; Hawkins, P A; Mans, A M et al. (1994) Optimizing the measurement of regional cerebral glucose consumption with [6-14C]glucose. J Neurosci Methods 54:49-62
|
Showing the most recent 10 out of 35 publications