Rhythmic motor acts such as breathing, chewing and locomotion are attractive for the study of how motor systems are organized and modulated to produce adaptive output. These motor acts are generated fully or in part by rhythmically active neural networks, pattern generators, that are easily activated in the isolated CNS and are thus amenable to experimental analysis. Particularly in invertebrates, where the restricted number, large size, and identifiability of neurons offer technical advantages, progress in understanding pattern generating networks and their adaptive modulation has been rapid. We have analyzed in detail the neural network and muscular system that generates heartbeat in the medicinal leech. Reciprocally inhibitory pairs of heart interneurons pace the heartbeat rhythm. Critical switch interneurons coordinate the pattern of heart motor neurons innervating the two hearts to produce two alternating coordination states. The period and pattern of the rhythm generating interneurons and the properties of heart muscle are modulated by FMRFamide and we have identified endogenous RFamide peptides in the CNS. We have explored the ionic currents and graded synaptic transmission that contribute to rhythmicity in heart interneurons and have begun to organize these data in a realistic computer model. Here we propose to continue our study of the intrinsic membrane and synaptic properties of heart interneurons that contribute to rhythmicity, and how these properties are modulated by RFamide peptides. To guide these studies, data will be incorporated into a ongoing computer simulation. We will explore the diversity of RFamide peptides present in the CNS and their modulatory effects upon neural and muscular targets. We will analyze the membrane properties of heart motor neurons to determine how these properties transform the output of the pattern generating network of interneurons, and we will explore in detail how the alternating coordination states of motor outflow are generated and controlled. We will pursue a multifaceted approach toward these aims, involving biochemical, anatomical, and physiological techniques. By studying the mechanisms for oscillation in neural networks and for the modulation and reconfiguration of these networks in the leech, we will uncover important information applicable to other more complex motor systems.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS024072-17
Application #
6393395
Study Section
Special Emphasis Panel (ZRG1-IFCN-5 (01))
Program Officer
Talley, Edmund M
Project Start
1984-07-01
Project End
2004-04-30
Budget Start
2001-05-01
Budget End
2002-04-30
Support Year
17
Fiscal Year
2001
Total Cost
$222,058
Indirect Cost
Name
Emory University
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
042250712
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Marin, Boris; Barnett, William H; Doloc-Mihu, Anca et al. (2013) High prevalence of multistability of rest states and bursting in a database of a model neuron. PLoS Comput Biol 9:e1002930
Lamb, Damon G; Calabrese, Ronald L (2013) Correlated conductance parameters in leech heart motor neurons contribute to motor pattern formation. PLoS One 8:e79267
Lamb, Damon G; Calabrese, Ronald L (2012) Small is beautiful: models of small neuronal networks. Curr Opin Neurobiol 22:670-5
Roffman, Rebecca C; Norris, Brian J; Calabrese, Ronald L (2012) Animal-to-animal variability of connection strength in the leech heartbeat central pattern generator. J Neurophysiol 107:1681-93
Norris, Brian J; Wenning, Angela; Wright, Terrence Michael et al. (2011) Constancy and variability in the output of a central pattern generator. J Neurosci 31:4663-74
Wright Jr, Terrence Michael; Calabrese, Ronald L (2011) Patterns of presynaptic activity and synaptic strength interact to produce motor output. J Neurosci 31:17555-71
Wright Jr, Terrence M; Calabrese, Ronald L (2011) Contribution of motoneuron intrinsic properties to fictive motor pattern generation. J Neurophysiol 106:538-53
Calabrese, Ronald L; Norris, Brian J; Wenning, Angela et al. (2011) Coping with variability in small neuronal networks. Integr Comp Biol 51:845-55
Wenning, Angela; Norris, Brian J; Doloc-Mihu, Anca et al. (2011) Bringing up the rear: new premotor interneurons add regional complexity to a segmentally distributed motor pattern. J Neurophysiol 106:2201-15
Weaver, Adam L; Roffman, Rebecca C; Norris, Brian J et al. (2010) A role for compromise: synaptic inhibition and electrical coupling interact to control phasing in the leech heartbeat CpG. Front Behav Neurosci 4:

Showing the most recent 10 out of 69 publications