Proteolipid protein (PLP) is the major protein component of CNS myelin and appears to be a major target of immune responses both in murine models of experimental autoimmune encephalomyelitis (EAE) and perhaps in human multiple sclerosis (MS). A chronic-relapsing form of EAE (R-EAE) is induced in inbred SJL/J mice following either active immunization with intact PLP or the major encephalitogenic determinant of the PLP molecule which encompasses amino acids 139-151 (PLP139-151(s)), or the adoptive transfer of T cell lines/clones specific for the PLP139-151(s) epitope. PLP-induced R-EAE follows a relapsing-remitting course of paralysis and is characterized histologically by perivascular mononuclear cell-rich infiltrates of the white matter of the central nervous system (CNS) and areas of acute and chronic demyelination. The well-understood genetics of the murine host and the similarities in both clinical course and histopathology of murine R-EAE and MS make it an ideal animal model for the study of immunopathogenic and immunoregulatory aspects of MS. We propose to examine the neuroantigen specificity, effector phenotype, T cell receptor usage, and lymphokine-producing profile of both peripheral and CNS-infiltrating neuroantigen-specific T cell-mediated immune (CMI) responses throughout the relapsing clinical course of PLP-induced R-EAE to determine if epitopes different than that which induced the initial paralytic episode are targeted during clinical relapses. We also propose to examine the conditions and mechanisms by which the induction and/or expression of PLP-induced R-EAE can be specifically downregulated (following the induction of neuroantigen-specific immunological tolerance). In addition, aspects of the molecular pathogenesis of demyelination will be addressed by defining and comparing encephalitogenic and tolerogenic PLP epitopes, and determining the effects of in vivo and in vitro tolerance induction on the ability of encephalitogenic PLP139-151(S)-specific T cell clones to produce particular lymphokines and/or subsequently mediate clinical disease. These studies should lead to a better understanding of the fine specificity, immunopathologic role, and immunoregulation of PLP-specific T cell-mediated immune responses which may be applicable to the understanding and treatment of human MS.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
1R01NS030871-01A1
Application #
3417805
Study Section
Neurology C Study Section (NEUC)
Project Start
1993-04-01
Project End
1997-03-31
Budget Start
1993-04-01
Budget End
1994-03-31
Support Year
1
Fiscal Year
1993
Total Cost
Indirect Cost
Name
Northwestern University at Chicago
Department
Type
Schools of Dentistry
DUNS #
005436803
City
Chicago
State
IL
Country
United States
Zip Code
60611
Robinson, Andrew P; Caldis, Matthew W; Harp, Christopher T et al. (2013) High-mobility group box 1 protein (HMGB1) neutralization ameliorates experimental autoimmune encephalomyelitis. J Autoimmun 43:32-43
Getts, Daniel R; Turley, Danielle M; Smith, Cassandra E et al. (2011) Tolerance induced by apoptotic antigen-coupled leukocytes is induced by PD-L1+ and IL-10-producing splenic macrophages and maintained by T regulatory cells. J Immunol 187:2405-17
Adipue, Iris A; Wilcox, Joel T; King, Cody et al. (2011) Characterization of a novel and spontaneous mouse model of inflammatory arthritis. Arthritis Res Ther 13:R114
Chastain, Emily M L; Duncan, D'Anne S; Rodgers, Jane M et al. (2011) The role of antigen presenting cells in multiple sclerosis. Biochim Biophys Acta 1812:265-74
Fu, Yan; Frederick, Terra J; Huff, Terry B et al. (2011) Paranodal myelin retraction in relapsing experimental autoimmune encephalomyelitis visualized by coherent anti-Stokes Raman scattering microscopy. J Biomed Opt 16:106006
Dogan, Rukiye-Nazan E; Long, Nancy; Forde, Eileen et al. (2011) CCL22 regulates experimental autoimmune encephalomyelitis by controlling inflammatory macrophage accumulation and effector function. J Leukoc Biol 89:93-104
Smarr, Charles B; Hsu, Chia-Lin; Byrne, Adam J et al. (2011) Antigen-fixed leukocytes tolerize Th2 responses in mouse models of allergy. J Immunol 187:5090-8
Martin, Aaron J; McCarthy, Derrick; Waltenbaugh, Carl et al. (2010) Ethylenecarbodiimide-treated splenocytes carrying male CD4 epitopes confer histocompatibility Y chromosome antigen transplant protection by inhibiting CD154 upregulation. J Immunol 185:3326-36
Zhang, Hong; Podojil, Joseph R; Chang, Judy et al. (2010) TGF-beta-induced myelin peptide-specific regulatory T cells mediate antigen-specific suppression of induction of experimental autoimmune encephalomyelitis. J Immunol 184:6629-36
Rodgers, Jane M; Zhou, Liang; Miller, Stephen D (2010) Act1, scene brain: astrocytes play a lead role. Immunity 32:302-4

Showing the most recent 10 out of 70 publications