The long term goal of this project is to contribute to the understanding of the role of K+ channel diversity in the central nervous system (CNS). K+ channels regulate neuronal excitability. They underlie many of the differences in functional properties that characterize specific neurons, contributing to the complexity of neuronal information coding and integration. It is hypothesized that their diversity provides signaling specificity to neuronal circuits and to the actions of neurotransmitters. Mutations in genes encoding K+ channels have been found to cause epilepsy and other types of human disease. This proposal focuses on a subtype of cortical GABAergic inhibitory interrneuron known as the fast-spiking (FS) cell, named for its ability to fire sustained trains of action potentials (APs) at remarkably high frequencies. GABAergic interneurons are key components of the cerebral cortex and have essential roles in information processing, plasticity, the generation of cortical rhythms, and in the pathogenesis of seizures. Knowledge of the molecular elements responsible for FS cell function is critical for the manipulation of cortical function to understand physiological and pathophysiological conditions and to provide targets for therapeutic drugs. It has been demonstrated that K+ channels of the Kv3 subfamily contribute to the ability of FS cells to fire at high frequency and preliminary evidence shows that the same channels have a key role in the regulation of synaptic transmission from FS cell terminals. Two additional types of K+ channels have also been found at the FS cell synapse.
Aim I will utilize electrophysiological recordings in acute slices from primary somatosensory cortex in mice to investigate the functions of the three types of K+ channels so far discovered at FS terminals. Immunolocalization will be used to investigate how localization within the synapse affects the roles of each type of channel.
Aim II will utilize electrophysiological recordings from electrically and chemically connected FS cells to understand the role of these channels in generating synchronous activity within FS cell networks.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS030989-16
Application #
7407393
Study Section
Sensorimotor Integration Study Section (SMI)
Program Officer
Silberberg, Shai D
Project Start
1992-08-01
Project End
2010-03-31
Budget Start
2008-04-01
Budget End
2009-03-31
Support Year
16
Fiscal Year
2008
Total Cost
$370,561
Indirect Cost
Name
New York University
Department
Physiology
Type
Schools of Medicine
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016
Nigro, Maximiliano José; Hashikawa-Yamasaki, Yoshiko; Rudy, Bernardo (2018) Diversity and Connectivity of Layer 5 Somatostatin-Expressing Interneurons in the Mouse Barrel Cortex. J Neurosci 38:1622-1633
Leffler, Abba E; Kuryatov, Alexander; Zebroski, Henry A et al. (2017) Discovery of peptide ligands through docking and virtual screening at nicotinic acetylcholine receptor homology models. Proc Natl Acad Sci U S A 114:E8100-E8109
Muñoz, William; Tremblay, Robin; Levenstein, Daniel et al. (2017) Layer-specific modulation of neocortical dendritic inhibition during active wakefulness. Science 355:954-959
Park, Jin-Yong; Dus, Monica; Kim, Seonil et al. (2016) Drosophila SLC5A11 Mediates Hunger by Regulating K(+) Channel Activity. Curr Biol 26:1965-1974
Tuncdemir, Sebnem N; Wamsley, Brie; Stam, Floor J et al. (2016) Early Somatostatin Interneuron Connectivity Mediates the Maturation of Deep Layer Cortical Circuits. Neuron 89:521-35
He, Miao; Tucciarone, Jason; Lee, SooHyun et al. (2016) Strategies and Tools for Combinatorial Targeting of GABAergic Neurons in Mouse Cerebral Cortex. Neuron 91:1228-1243
Tremblay, Robin; Lee, Soohyun; Rudy, Bernardo (2016) GABAergic Interneurons in the Neocortex: From Cellular Properties to Circuits. Neuron 91:260-92
Muñoz, William; Tremblay, Robin; Rudy, Bernardo (2014) Channelrhodopsin-assisted patching: in vivo recording of genetically and morphologically identified neurons throughout the brain. Cell Rep 9:2304-16
Kang, Wenfei; Balordi, Francesca; Su, Nan et al. (2014) Astrocyte activation is suppressed in both normal and injured brain by FGF signaling. Proc Natl Acad Sci U S A 111:E2987-95
Amarillo, Yimy; Zagha, Edward; Mato, German et al. (2014) The interplay of seven subthreshold conductances controls the resting membrane potential and the oscillatory behavior of thalamocortical neurons. J Neurophysiol 112:393-410

Showing the most recent 10 out of 72 publications