Seizures are a serious problem in many human neuropathologies. They are a major symptom associated with fever, mechanical trauma, electroconvulsive shock, drugs, alcohol, tumors, and epilepsy. The long-term objective of this research is to discover novel treatments for nervous system seizures. The general approach is to establish a model for seizure disorders in the fruitfly Drosophila by taking advantage of a) electrophysiological methods developed to quantify levels of seizure susceptibility and b) mutations that modify this susceptibility. One useful class of mutants are seizure-sensitive, about 5-10 times more sensitive than normal flies. These mutants are called bang sensitive (BS) paralytics and are caused by mutations in several identified genes, including bangsenseless (bss), easily shocked (eas), and slamdance (sda). Central to seizure-sensitivity in Drosophila may be a K-C1co-transporter gene called kazachoc (kcc). A kcc mutation acts to enhance seizure-sensitivity in all BS mutants thus far examined. Another useful class of interacting mutations are seizure-suppressors. Seizure- suppression is manifested in two ways: 1) animals carrying suppressor mutations are seizure-resistant compared with normal flies (greater than two-fold more resistant);and 2) suppressor mutations confer seizure resistance to seizure-sensitive strains in homozygous double mutant combinations. That is, suppressor mutations """"""""cure"""""""" the seizure defect of Drosophila """"""""epilepsy"""""""" mutants. Several seizure-suppressor genes having been identified thus far includingpara, a Na channel, shakB, a gap junction connexins and esgEP, a dominant, gain-of- function suppressor.
Aim 1 is to identify new seizure-suppressor genes through double mutant combinations with Drosophila mutations (reverse genetics).
Aim 2 is to conduct mutant screens for identifying novel seizure- suppressor mutations.
Aim 3 is to determine how seizures are suppressed by loss-of-function mutations in mei- P26, a RING finger, B-box zinc finger, coiled-coil (RBCC domain) and beta-propeller (NHL domain) protein mediating protein-protein interactions.
Aim 4 is to determine how seizures are suppressed by gain-of-function mutations of esg: the role of esg transcriptional targets.
Aim 5 is to determine how seizure-suppressor mutations and anticonvulsant drugs interact to suppress seizure-susceptibility in BS mutants.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS031231-14
Application #
7548606
Study Section
Special Emphasis Panel (ZRG1-MDCN-K (93))
Program Officer
Riddle, Robert D
Project Start
1994-07-01
Project End
2009-12-31
Budget Start
2009-01-01
Budget End
2009-12-31
Support Year
14
Fiscal Year
2009
Total Cost
$278,969
Indirect Cost
Name
University of California Berkeley
Department
Public Health & Prev Medicine
Type
Schools of Earth Sciences/Natur
DUNS #
124726725
City
Berkeley
State
CA
Country
United States
Zip Code
94704
Saras, Arunesh; Wu, Veronica V; Brawer, Harlan J et al. (2017) Investigation of Seizure-Susceptibility in a Drosophila melanogaster Model of Human Epilepsy with Optogenetic Stimulation. Genetics 206:1739-1746
Saras, Arunesh; Tanouye, Mark A (2016) Mutations of the Calcium Channel Gene cacophony Suppress Seizures in Drosophila. PLoS Genet 12:e1005784
Saras, Arunesh; Tanouye, Mark A (2016) Seizure Suppression by High Temperature via cAMP Modulation in Drosophila. G3 (Bethesda) 6:3381-3387
Kroll, Jason R; Wong, Karen G; Siddiqui, Faria M et al. (2015) Disruption of Endocytosis with the Dynamin Mutant shibirets1 Suppresses Seizures in Drosophila. Genetics 201:1087-102
Kroll, Jason R; Saras, Arunesh; Tanouye, Mark A (2015) Drosophila sodium channel mutations: Contributions to seizure-susceptibility. Exp Neurol 274:80-7
Rusan, Zeid M; Kingsford, Olivia A; Tanouye, Mark A (2014) Modeling glial contributions to seizures and epileptogenesis: cation-chloride cotransporters in Drosophila melanogaster. PLoS One 9:e101117
Howlett, Iris C; Tanouye, Mark A (2013) Seizure-sensitivity in Drosophila is ameliorated by dorsal vessel injection of the antiepileptic drug valproate. J Neurogenet 27:143-50
Howlett, Iris C; Rusan, Zeid M; Parker, Louise et al. (2013) Drosophila as a model for intractable epilepsy: gilgamesh suppresses seizures in para(bss1) heterozygote flies. G3 (Bethesda) 3:1399-407
Kroll, Jason R; Tanouye, Mark A (2013) Rescue of easily shocked mutant seizure sensitivity in Drosophila adults. J Comp Neurol 521:3500-7
Parker, Louise; Padilla, Miguel; Du, Yuzhe et al. (2011) Drosophila as a model for epilepsy: bss is a gain-of-function mutation in the para sodium channel gene that leads to seizures. Genetics 187:523-34

Showing the most recent 10 out of 22 publications