We have developed genetically engineered herpes simplex virus-1 (HSV-1) vectors that can selectively and efficiently infect and kill brain tumor cells in situ without harming surrounding brain cells and without causing systemic disease. Having taken one such vector into human clinical trial, we set forth testable hypotheses aimed at further understanding and improving this method of brain tumor therapy. In order to increase the efficacy of HSV oncolysis in brain tumor therapy, we hypothesize that: a.) HSV oncolytic therapy can be improved by using a HSV vector in conjunction with commonly used chemotherapeutic agents for brain tumors; b.) The efficacy of herpes vectors for brain tumor therapy can be improved through the use of a HSV backbone that replicates better in glioma cells while retaining the necessary safety features for clinical trials. In order to better understand and improve the delivery of HSV vectors for brain tumor therapy, we hypothesize that: a.) Some of the efficacy following intravascular or intratumoral HSV tumor therapy may be due to selective injury of tumor vasculature versus normal vasculature; b.) The timing of co-treatment with antiangiogenesis agents may either inhibit or augment the selective injury to tumor vasculature by oncolytic HSV vectors; c.) Prior anti-HSV immunity could alter the efficacy of intravascular delivery of oncolytic HSV but can be modulated with immunosuppressive agents. In order to further improve the anti-tumor immunity induced by HSV tumor therapy, we hypothesize that: a.) Defective HSV vectors expressing immune-modulatory genes will increase the survival of animals harboring intracranial tumors, b.) A recombinant virus can be constructed from an appropriate parent virus that will express a cytokine without down-regulating MHC-I thus enhancing the anti-tumor immune response.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
2R01NS032677-11
Application #
6579131
Study Section
Special Emphasis Panel (ZRG1-BDCN-4 (01))
Program Officer
Finkelstein, Robert
Project Start
1994-05-01
Project End
2007-03-31
Budget Start
2003-04-01
Budget End
2004-03-31
Support Year
11
Fiscal Year
2003
Total Cost
$351,583
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Saha, Dipongkor; Wakimoto, Hiroaki; Peters, Cole W et al. (2018) Combinatorial Effects of VEGFR Kinase Inhibitor Axitinib and Oncolytic Virotherapy in Mouse and Human Glioblastoma Stem-Like Cell Models. Clin Cancer Res 24:3409-3422
Saha, Dipongkor; Martuza, Robert L; Rabkin, Samuel D (2018) Oncolytic herpes simplex virus immunovirotherapy in combination with immune checkpoint blockade to treat glioblastoma. Immunotherapy 10:779-786
Chongsathidkiet, Pakawat; Jackson, Christina; Koyama, Shohei et al. (2018) Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nat Med 24:1459-1468
Saha, Dipongkor; Martuza, Robert L; Rabkin, Samuel D (2017) Macrophage Polarization Contributes to Glioblastoma Eradication by Combination Immunovirotherapy and Immune Checkpoint Blockade. Cancer Cell 32:253-267.e5
Esaki, Shinichi; Nigim, Fares; Moon, Esther et al. (2017) Blockade of transforming growth factor-? signaling enhances oncolytic herpes simplex virus efficacy in patient-derived recurrent glioblastoma models. Int J Cancer 141:2348-2358
Nigim, Fares; Esaki, Shin-Ichi; Hood, Michael et al. (2016) A new patient-derived orthotopic malignant meningioma model treated with oncolytic herpes simplex virus. Neuro Oncol 18:1278-87
Esaki, Shinichi; Rabkin, Samuel D; Martuza, Robert L et al. (2016) Transient fasting enhances replication of oncolytic herpes simplex virus in glioblastoma. Am J Cancer Res 6:300-11
Marciscano, Ariel E; Stemmer-Rachamimov, Anat O; Niemierko, Andrzej et al. (2016) Benign meningiomas (WHO Grade I) with atypical histological features: correlation of histopathological features with clinical outcomes. J Neurosurg 124:106-14
Lu, Lei; Saha, Dipongkor; Martuza, Robert L et al. (2015) Single agent efficacy of the VEGFR kinase inhibitor axitinib in preclinical models of glioblastoma. J Neurooncol 121:91-100
Nigim, Fares; Cavanaugh, Jill; Patel, Anoop P et al. (2015) Targeting Hypoxia-Inducible Factor 1? in a New Orthotopic Model of Glioblastoma Recapitulating the Hypoxic Tumor Microenvironment. J Neuropathol Exp Neurol 74:710-22

Showing the most recent 10 out of 73 publications