GABA is the major inhibitory neurotransmitter in the brain. Fast inhibitory post-synaptic potentials are mediated by GABAA receptors (GABARs), which contain binding sites for many clinically relevant drugs such as benzodiazepines, barbiturates, and general anesthetics. GABAR currents are also modulated by neurosteroids and lanthanum and antagonized by penicillin, picrotoxin, bicuculline, furosemide, and zinc. The GABAR is a hetero-oligomeric protein complex composed of five subunits which together form a transmembrane chloride ion channel. Four different subunit families (alpha, beta, gamma, delta) have been studied extensively and two new subunit families pi and epsilon have been identified recently. Each subunit family is composed of one or more subtypes. Six alpha (alpha1-alpha6), three beta (beta1-beta3), three gamma(gamma1-gamma3), and delta(delta1), one e (e1) and one pi(pi1) subunit subtypes have been identified. Pharmacological studies of recombinant receptors have shown that individual subtypes confer different sensitivities to GABAR modulators such as benzodiazepines, barbiturates, propofol, loreclezole, alcohol, furosemide, zinc, other divalent cations and lanthanum. The hypotheses to be tested are the following: 1) GABAR subunit subtypes contain binding and modulatory sites that are subtype specific. 2) Allosteric modulators bind to N-terminal, extracellular portions of M2 or M2-M2 extracellular domains. 3) Binding of allosteric modulators bind to a restricted number of amino acid residues on these extracellular domains. 4) The kinetic properties of GABARs, including gating and desensitization, are subunit subtype specific. 5) Specific functional domains are present in the transmembrane portion of GABAR subunit subtypes that determine their kinetic properties.
The specific aims are to determine: 1) Binding site(s) on GABAR beta and/or alpha subtypes for zinc and other divalent cations. 2) Modulatory sites on alpha, gamma, delta, and epsilon subtypes that regulate sensitivity to zinc and other divalent cations. 3) Binding sites on GABAR subtypes for lanthanum enhancement and inhibitions of GABAR current. 4) Binding sites on GABAR subtypes for furosemide inhibition of GABAR current. 5) Binding sites on GABAR subtypes for barbiturate enhancement of GABAR current and direct activation of current. 6) Biophysical properties of recombinant GABAR isoforms assembled from GABAR subtypes that are expressed in hippocampal dentate granule cells. 7) Structural bases for the biophysical properties of recombinant GABAR isoforms that are assembled from GABAR subtypes expressed in hippocampal dentate granule cells.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS033300-09
Application #
6539797
Study Section
Neurological Sciences Subcommittee 1 (NLS)
Program Officer
Fureman, Brandy E
Project Start
1995-05-01
Project End
2004-06-30
Budget Start
2002-05-01
Budget End
2004-06-30
Support Year
9
Fiscal Year
2002
Total Cost
$282,719
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Neurology
Type
Schools of Medicine
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Lagrange, Andre H; Hu, NingNing; Macdonald, Robert L (2018) GABA beyond the synapse: defining the subtype-specific pharmacodynamics of non-synaptic GABAA receptors. J Physiol 596:4475-4495
Wang, Chen-Hung; Hernandez, Ciria C; Wu, Junyi et al. (2018) A Missense Mutation A384P Associated with Human Hyperekplexia Reveals a Desensitization Site of Glycine Receptors. J Neurosci 38:2818-2831
Hernandez, Ciria C; Kong, Weijing; Hu, Ningning et al. (2017) Altered Channel Conductance States and Gating of GABAA Receptors by a Pore Mutation Linked to Dravet Syndrome. eNeuro 4:
Ishii, Atsushi; Kang, Jing-Qiong; Schornak, Cara C et al. (2017) A de novo missense mutation of GABRB2 causes early myoclonic encephalopathy. J Med Genet 54:202-211
Shen, Dingding; Hernandez, Ciria C; Shen, Wangzhen et al. (2017) De novo GABRG2 mutations associated with epileptic encephalopathies. Brain 140:49-67
Hernandez, Ciria C; Klassen, Tara L; Jackson, Laurel G et al. (2016) Deleterious Rare Variants Reveal Risk for Loss of GABAA Receptor Function in Patients with Genetic Epilepsy and in the General Population. PLoS One 11:e0162883
Botzolakis, Emmanuel J; Gurba, Katharine N; Lagrange, Andre H et al. (2016) Comparison of ?-Aminobutyric Acid, Type A (GABAA), Receptor ??? and ??? Expression Using Flow Cytometry and Electrophysiology: EVIDENCE FOR ALTERNATIVE SUBUNIT STOICHIOMETRIES AND ARRANGEMENTS. J Biol Chem 291:20440-61
Janve, Vaishali S; Hernandez, Ciria C; Verdier, Kelienne M et al. (2016) Epileptic encephalopathy de novo GABRB mutations impair ?-aminobutyric acid type A receptor function. Ann Neurol 79:806-825
Kang, Jing-Qiong; Macdonald, Robert L (2016) Molecular Pathogenic Basis for GABRG2 Mutations Associated With a Spectrum of Epilepsy Syndromes, From Generalized Absence Epilepsy to Dravet Syndrome. JAMA Neurol 73:1009-16
Kang, Jing-Qiong; Shen, Wangzhen; Zhou, Chengwen et al. (2015) The human epilepsy mutation GABRG2(Q390X) causes chronic subunit accumulation and neurodegeneration. Nat Neurosci 18:988-96

Showing the most recent 10 out of 72 publications