Oligodendrocytes are myelinating glial cells found in all regions of the central nervous system. The major function of oligodendrocytes is to form myelin sheaths around axons to ensure the rapid and faithful transmission of electrical signals. During development, oligodendrocytes precursor cells (OPCs) have to go through a series of morphological and molecular changes before they become fully differentiated into mature myelinating oligodendrocytes. The differentiation and myelination processes of oligodendrocytes are tightly controlled by transcription factors. Recent studies have demonstrated that Sox10 transcription factor directly stimulates OPC differentiation and myelin gene expression. However, OPC differentiation is tightly regulated by other transcription factors (TFs) including Nkx2.2, Olig1, Hes5 and Id4, all of which are expressed in undifferentiated OPC cells in the developing central nervous system. While Nkx2.2 and Olig1 function to promote OPC differentiation, Hes5 and Id4 act as inhibitors of OPC maturation. The functional relationship of these four regulatory TFs in the control of OL differentiation has not been determined. In this application, we hypothesize that Nkx2.2 enhances OPC maturation indirectly by suppressing the expression or function of Hes5 and Id4, but functions synergistically with Olig1 in promoting OPC differentiation. These hypotheses will be tested in the first two aims of the proposal. Recent data showed that Nkx2.2 is rapidly down-regulated in differentiated OLs and over-expression of Nkx2.2 in oligodendrocyte cell line inhibits MBP gene expression, raising the possibility that Nkx2.2 switches its role to become a repressor of myelin gene expression in mature OLs to prevent excessive myelin production. This possibility will be examined in the third aim of the proposal. Finally, we will test the hypothesis that persistent expression of Sox10 in mature OLs functions to maintain myelin gene expression and myelin sheath stability. The interplay of Sox10 and Nkx2.2 in myelinating OL cells may be responsible for the delicate balance of myelin production and structural maintenance. This line of study could help us understand molecular pathways that control axonal myelination process and provide insights into the development of molecular approaches to stimulate oligodendrocyte regeneration and remyelination in demyelinating diseases.

Public Health Relevance

The proposed studies will provide important information on the function and regulations of transcription factors that control oligodendrocyte differentiation and myelin gene expression in the developing central nervous system. Knowledge obtained from this study can help us understand the molecular pathways that govern the differentiation and myelination of oligodendrocytes, and provide cues for promoting oligodendrocyte regeneration and axonal remyelination in neurological patients and spinal cord injury patients.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS037717-11
Application #
8113349
Study Section
Cellular and Molecular Biology of Glia Study Section (CMBG)
Program Officer
Morris, Jill A
Project Start
2000-03-01
Project End
2014-05-31
Budget Start
2011-08-01
Budget End
2012-07-31
Support Year
11
Fiscal Year
2011
Total Cost
$316,379
Indirect Cost
Name
University of Louisville
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
057588857
City
Louisville
State
KY
Country
United States
Zip Code
40292
Zhu, Q; Tan, Z; Zhao, S et al. (2015) Developmental expression and function analysis of protein tyrosine phosphatase receptor type D in oligodendrocyte myelination. Neuroscience 308:106-14
Zhu, Qiang; Zhao, Xiaofeng; Zheng, Kang et al. (2014) Genetic evidence that Nkx2.2 and Pdgfra are major determinants of the timing of oligodendrocyte differentiation in the developing CNS. Development 141:548-55
Zhao, X; Huang, H; Chen, Y et al. (2013) Dynamic expression of secreted Frizzled-related protein 3 (sFRP3) in the developing mouse spinal cord and dorsal root ganglia. Neuroscience 248:594-601
Du, E; Li, Hong; Jin, Shunying et al. (2013) Evidence that TMEM67 causes polycystic kidney disease through activation of JNK/ERK-dependent pathways. Cell Biol Int 37:694-702
Zhu, Ying; Li, Hong; Li, Kehan et al. (2013) Necl-4/SynCAM-4 is expressed in myelinating oligodendrocytes but not required for axonal myelination. PLoS One 8:e64264
Huang, Hao; Zhao, Xiao-Feng; Zheng, Kang et al. (2013) Regulation of the timing of oligodendrocyte differentiation: mechanisms and perspectives. Neurosci Bull 29:155-64
Zheng, Kang; Li, Hong; Huang, Hao et al. (2012) MicroRNAs and glial cell development. Neuroscientist 18:114-8
Zheng, Kang; Li, Hong; Zhu, Ying et al. (2010) MicroRNAs are essential for the developmental switch from neurogenesis to gliogenesis in the developing spinal cord. J Neurosci 30:8245-50
Zhu, Ying; Park, Jinsil; Hu, Xuemei et al. (2010) Control of oligodendrocyte generation and proliferation by Shp2 protein tyrosine phosphatase. Glia 58:1407-14
Cai, Jun; Zhu, Qiang; Zheng, Kang et al. (2010) Co-localization of Nkx6.2 and Nkx2.2 homeodomain proteins in differentiated myelinating oligodendrocytes. Glia 58:458-68

Showing the most recent 10 out of 20 publications