Duchenne Muscular Dystrophy (DMD) and Becker Muscular Dystrophy (BMD) are devastating disorders.Both are associated with mutations in the dystrophin gene, a huge gene with 79 exons spread over 2.4million bases of genomic sequence. Deletions of large portions of the gene account for around 60% of alldystrophin mutations. The remainder consist of point mutations (primarily premature stop codon mutations),small deletions resulting in shift of the reading frame, and (in less than 5%) duplications.We have developed the methodology to rapidly, robustly, and economically perform direct sequence analysisof the entire coding and regulatory regions of the dystrophin gene, greatly expediting the characterization ofmutations in non-deleted dystrophinopathy patients. Using this methodology, we propose to characterize themutations responsible for DMD and BMD in a large cohort of patients, from whom a standardized andthorough phenotypic characterization will be obtained. Phenotype/genotype information will be compiled in adystrophinopathy registry/database. In addition to correlation of the genotype to the phenotype, we willdetermine the effect that specific mutations have on mRNA processing and translation, and the relationshipof both the mutations context and its resultant molecular profile to disease phenotype. Finally, we will testthe hypothesis that specific missense mutations imply the presence of as-yet uncharacterized dystrophinbinding partners.Our catalogue of patient mutations will identify molecular pathways which influence disease pathogenesis,and may suggest novel targets for treatment. Although we do not propose to perform treatment trials atpresent, this proposed study will identify cohorts of patients who may be candidates for any future trials hereor at other institutions.
Showing the most recent 10 out of 25 publications