Malignant gliomas are among the least curable and most chemo- and radioresistant of human tumors. In prior studies we and others established that expression of the multifunctional growth factor (SF/HGF) and its receptor c-Met in human gliomas increases significantly with tumor progression from low grade to malignant. We have found that SF/HGF protects human glioblastoma cells from cytotoxicity induced by DNA-damaging agents in vitro and protects against radiation-induced glioma cell apoptosis in vivo. We have established that the cytoprotective/anti-apoptotic action of c-Met activation by SF/HGF occurs, in part, through the PI3-kinase--> AKT second messenger pathway. The involvement of more downstream or parallel signaling pathways, gene expression, and biochemical effectors in the human glioma cytoprotective and anti-apoptotic response to SF/HGF remain unknown. This application proposes to identify specific molecular pathways through which SF/HGF stimulates chemo- and radio resistance in human glioblastoma cells.
Aim #1 will identify novel differentially expressed gene products involved in SF/HGF-mediated cytoprotection of glioma cells. We will confirm and expand on our studies that have preliminarily implicated glioma cell- specific patterns of SF/HGF-induced gene expression in the cytoprotective mechanism.
Aim #2 will determine the biochemical effector mechanisms of DNA damage-induced apoptosis and their inhibition by SF/HGF in human glioma cells. We will focus on sphingolipid signaling, death receptor signaling, mitochondrial damage, caspases and the regulators of caspase activation - IAPs and SMAC.
Aim #3 will examine transcriptional regulators of SF/HGF-mediated glioma cell protection. We will determine how SF/HGF alters transcription factor activation/phosphorylation, nuclear translocation, DNA binding, and gene expression and determine the role of specific transcription factors in SF/HGF-mediated cytoprotection and other molecular/biochemical anti-apoptotic endpoints found in Aims #1 and #2.
Aim #4 will determine if inhibiting endogenous autocrine SF/HGF:c-Met signaling or its downstream anti-apoptotic effectors identified in Aims #1-3 enhances the therapeutic response of human glioma xenografts to radiation and/or chemotherapy. These studies will determine mechanisms of human glioma chemo-and radio resistance identify new approaches to enhancing brain tumor cytotoxic therapy.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS043987-03
Application #
6921877
Study Section
Special Emphasis Panel (ZRG1-BDCN-3 (01))
Program Officer
Fountain, Jane W
Project Start
2003-05-01
Project End
2008-04-30
Budget Start
2005-05-01
Budget End
2006-04-30
Support Year
3
Fiscal Year
2005
Total Cost
$485,801
Indirect Cost
Name
Hugo W. Moser Research Institute Kennedy Krieger
Department
Type
DUNS #
155342439
City
Baltimore
State
MD
Country
United States
Zip Code
21205
Xia, Shuli; Lal, Bachchu; Tung, Brian et al. (2016) Tumor microenvironment tenascin-C promotes glioblastoma invasion and negatively regulates tumor proliferation. Neuro Oncol 18:507-17
Goodwin, C Rory; Woodard, Crystal L; Zhou, Xin et al. (2016) Microarray-Based Phospho-Proteomic Profiling of Complex Biological Systems. Transl Oncol 9:124-129
Sun, Peng; Xia, Shuli; Lal, Bachchu et al. (2014) Lipid metabolism enzyme ACSVL3 supports glioblastoma stem cell maintenance and tumorigenicity. BMC Cancer 14:401
Hong, Xiaohua; Liu, Li; Wang, Meiyun et al. (2014) Quantitative multiparametric MRI assessment of glioma response to radiotherapy in a rat model. Neuro Oncol 16:856-67
Woodard, Crystal L; Goodwin, C Rory; Wan, Jun et al. (2013) Profiling the dynamics of a human phosphorylome reveals new components in HGF/c-Met signaling. PLoS One 8:e72671
Rath, Prakash; Lal, Bachchu; Ajala, Olutobi et al. (2013) In Vivo c-Met Pathway Inhibition Depletes Human Glioma Xenografts of Tumor-Propagating Stem-Like Cells. Transl Oncol 6:104-11
Zhang, Yimao; Pullambhatla, Mrudula; Laterra, John et al. (2012) Influence of bioluminescence imaging dynamics by D-luciferin uptake and efflux mechanisms. Mol Imaging 11:499-506
Wang, S D; Rath, P; Lal, B et al. (2012) EphB2 receptor controls proliferation/migration dichotomy of glioblastoma by interacting with focal adhesion kinase. Oncogene :
Wu, Yanjue; Richard, Jean-Philippe; Wang, Shervin D et al. (2012) Regulation of glioblastoma multiforme stem-like cells by inhibitor of DNA binding proteins and oligodendroglial lineage-associated transcription factors. Cancer Sci 103:1028-37
Li, Yunqing; Laterra, John (2012) Cancer stem cells: distinct entities or dynamically regulated phenotypes? Cancer Res 72:576-80

Showing the most recent 10 out of 37 publications