The most apparent consequence of spinal cord injury (SCI) is the immediate loss of sensation and motor function. However, a dramatic impairment of the functionality of the gastrointestinal (GI) tract occurs in the vast majority of the patients, many of whom have a severely depressed gastric motility that necessitates enteral feeding. The pathophysiology of these disorders remains incompletely understood, but data gathered during the previous funding period point toward diminished responsiveness of vagal afferent signaling from the GI tract to the nucleus tractus solitarius (NTS) in the medulla. For example, SCI results in 1) diminished postprandial serum expression of cholecystokinin (CCK); 2) diminished NTS activation following peripheral sulfated CCK (CCK-8s); 3) diminished gastroinhibition following central microinjection of CCK-8s into the NTS; and 4) diminished in vitro, whole cell recordings of excitatory post-synaptic currents following bath application of CCK-8s. A subclass of NTS neurons provide a tonic inhibitory (GABA) input onto motoneurones of the dorsal motor nucleus of the vagus (DMV), which composes the vagal motor limb of vago-vagal GI reflexes. Our novel pilot data have identified similar derangements to the prokinetic GI peptide, ghrelin. We hypothesize that a post-SCI reduction in afferent signaling within the gut-brain axis may bias NTS-DMV activity in favor of an inhibitory GABAergic resting tone. This unopposed inhibitory signal may be one mechanism leading to GI dysmotility following SCI. While clinical interest in the therapeutic potential of ghrelin is emerging, the therapeutic efficacy of ghrelin mimetics may be diminished for use in SCI patients. In the present proposal we will use an animal model of T3-SCI combined with in vivo physiological (gastric emptying or motility and vagus nerve) recording, and molecular (RT-PCR and ELISA) approaches with the aim of defining the mechanisms resulting in the loss of GI function after SCI. Our overarching hypothesis is that spinal cord injury reduces vagal afferent signaling and provokes gastric dysmotility through unregulated GABAergic signaling within brainstem vagal circuits. Specifically we will test the hypotheses that 1) reduced vagal afferent signaling to gastric brainstem circuits is mediated by diminished GI peptide release; 2) reduced presynaptic glutamatergic signaling within gastric brainstem circuits is mediated by reduced sensitivity of vagal afferents to GI peptides; 3) reduced vagal afferent and NTS neuronal sensitivity to feeding-related peptides biases GI brainstem circuits toward a tonic GABAergic inhibition of DMV efferent outflow to the stomach. The data generated by the present proposal will provide novel information regarding the efficacy of therapeutic strategies to reduce GI dysmotility following SCI, thereby improving functional outcome of digestive processes. This proposal will provide the basis to refine a model of post-SCI alterations in gastrointestinal function that encompasses the entire length of the GI tract. Ultimately this will help alleviate GI dysfunctions in SCI patients.

Public Health Relevance

Delayed gastrointestinal transit is a common disorder following spinal cord injury. This study will help identify changes in the nervous system processing of digestive signals following spinal cord injury. This understanding is necessary in order to develop effective therapeutic treatment of gastrointestinal motility disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS049177-11
Application #
8881336
Study Section
Neuroendocrinology, Neuroimmunology, Rhythms and Sleep Study Section (NNRS)
Program Officer
Jakeman, Lyn B
Project Start
2004-07-01
Project End
2017-07-31
Budget Start
2015-08-01
Budget End
2017-07-31
Support Year
11
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Pennsylvania State University
Department
Neurosciences
Type
Schools of Medicine
DUNS #
129348186
City
Hershey
State
PA
Country
United States
Zip Code
17033
Besecker, E M; White, A R; Holmes, G M (2018) Diminished gastric prokinetic response to ghrelin in a rat model of spinal cord injury. Neurogastroenterol Motil 30:e13258
Besecker, Emily M; Deiter, Gina M; Pironi, Nicole et al. (2017) Mesenteric vascular dysregulation and intestinal inflammation accompanies experimental spinal cord injury. Am J Physiol Regul Integr Comp Physiol 312:R146-R156
Holmes, Gregory M; Swartz, Emily M; McLean, Margaret S (2014) Fabrication and implantation of miniature dual-element strain gages for measuring in vivo gastrointestinal contractions in rodents. J Vis Exp :51739
Swartz, E M; Browning, K N; Travagli, R A et al. (2014) Ghrelin increases vagally mediated gastric activity by central sites of action. Neurogastroenterol Motil 26:272-82
Swartz, E M; Holmes, G M (2014) Gastric vagal motoneuron function is maintained following experimental spinal cord injury. Neurogastroenterol Motil 26:1717-29
Holmes, Gregory M (2012) Upper gastrointestinal dysmotility after spinal cord injury: is diminished vagal sensory processing one culprit? Front Physiol 3:277
Primeaux, Stefany D (2011) QRFP in female rats: effects on high fat food intake and hypothalamic gene expression across the estrous cycle. Peptides 32:1270-5
Tong, M; Qualls-Creekmore, E; Browning, K N et al. (2011) Experimental spinal cord injury in rats diminishes vagally-mediated gastric responses to cholecystokinin-8s. Neurogastroenterol Motil 23:e69-79
Qualls-Creekmore, E; Tong, M; Holmes, G M (2010) Time-course of recovery of gastric emptying and motility in rats with experimental spinal cord injury. Neurogastroenterol Motil 22:62-9, e27-8
Qualls-Creekmore, E; Tong, M; Holmes, G M (2010) Gastric emptying of enterally administered liquid meal in conscious rats and during sustained anaesthesia. Neurogastroenterol Motil 22:181-5

Showing the most recent 10 out of 11 publications