Next-generation sequencing technology is opening up new opportunities to rethink the way we identify disease causing genetic variation. An early application, whole exome sequencing, has now been established by a small number of research labs, including ours. Exome sequencing allows obtaining a near complete set of protein coding genomic variation in single individuals for less than $5,000. Promising targets for exome sequencing studies are Mendelian diseases, such as hereditary spastic paraplegias (HSP). HSP comprise a genetically very heterogeneous set of neurological disorders with currently 39 different HSP chromosomal loci being reported;yet, the identified genes explain only 60% of the genetic effect at best. Traditional methods of gene identification require linkage analysis of large families, but face increasing difficulties to identify such extended pedigrees for rare HSP forms. However, the innovative approach described in this application will overcome some of these limitations and utilize relatively small pedigrees for highly effective gene identification. We will apply exome sequencing, which will characterize all coding changes and flanking exonic variation in two individuals of a family. We have developed a multi-tiered strategy to reduce the number of identified novel variants to the very causative change in an individual family. We propose to study at least 60 HSP families, which are too small to yield conclusive results with linkage analysis. If the developing technology permits we will consider a larger sample or perform whole genome sequencing. Beyond the important benefit to genetics of HSP, this study will allow us to further establish this new method, which will benefit a large range of additional disease studies.

Public Health Relevance

The sequencing of the complete set of coding variation in an individual (the """"""""exome"""""""") is now feasible as recently shown by others and us. We propose to study well defined relatively small Mendelian families with Hereditary Spastic Paraplegia (HSP), a disabling neurodegenerative disease. The goal is to accelerate the identification of still missing genes in HSP.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
3R01NS072248-02S2
Application #
8467134
Study Section
Special Emphasis Panel (ZRG1-GGG-M (91))
Program Officer
Sutherland, Margaret L
Project Start
2011-02-01
Project End
2016-01-31
Budget Start
2012-02-01
Budget End
2013-01-31
Support Year
2
Fiscal Year
2012
Total Cost
$29,309
Indirect Cost
$10,153
Name
University of Miami School of Medicine
Department
Genetics
Type
Schools of Medicine
DUNS #
052780918
City
Coral Gables
State
FL
Country
United States
Zip Code
33146
Wilke, Carlo; Rattay, Tim W; Hengel, Holger et al. (2018) Serum neurofilament light chain is increased in hereditary spastic paraplegias. Ann Clin Transl Neurol 5:876-882
Abrams, Alexander J; Fontanesi, Flavia; Tan, Natalie B L et al. (2018) Insights into the genotype-phenotype correlation and molecular function of SLC25A46. Hum Mutat 39:1995-2007
Bis-Brewer, Dana M; Züchner, Stephan (2018) Perspectives on the Genomics of HSP Beyond Mendelian Inheritance. Front Neurol 9:958
Synofzik, Matthis; Helbig, Katherine L; Harmuth, Florian et al. (2018) De novo ITPR1 variants are a recurrent cause of early-onset ataxia, acting via loss of channel function. Eur J Hum Genet 26:1623-1634
Rattay, Tim W; Just, Jennifer; Röben, Benjamin et al. (2018) Nerve ultrasound characterizes AMN polyneuropathy as inhomogeneous and focal hypertrophic. Orphanet J Rare Dis 13:194
Newton, Timothy; Allison, Rachel; Edgar, James R et al. (2018) Mechanistic basis of an epistatic interaction reducing age at onset in hereditary spastic paraplegia. Brain 141:1286-1299
Estrada-Cuzcano, Alejandro; Martin, Shaun; Chamova, Teodora et al. (2017) Loss-of-function mutations in the ATP13A2/PARK9 gene cause complicated hereditary spastic paraplegia (SPG78). Brain 140:287-305
Minnerop, Martina; Kurzwelly, Delia; Wagner, Holger et al. (2017) Hypomorphic mutations in POLR3A are a frequent cause of sporadic and recessive spastic ataxia. Brain 140:1561-1578
Schöls, Ludger; Rattay, Tim W; Martus, Peter et al. (2017) Hereditary spastic paraplegia type 5: natural history, biomarkers and a randomized controlled trial. Brain 140:3112-3127
Mackenzie, Ian R; Nicholson, Alexandra M; Sarkar, Mohona et al. (2017) TIA1 Mutations in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Promote Phase Separation and Alter Stress Granule Dynamics. Neuron 95:808-816.e9

Showing the most recent 10 out of 57 publications