The deleterious effects of alcohol are primarily mediated by its metabolic by-products. Ethanol metabolism by microsomal and mitochondrial systems generates reactive oxygen and nitrogen species, and is associated with diminished glutathione and antioxidant enzymatic activity, all of which promote oxidative stress. In addition, the accumulation of ethanol-derived aldehydes and hydroxyethyl radicals serves to modify critical biological functions by forming adducts with proteins and DNA. The availability of animal models in which ethanol metabolism or antioxidant mechanisms are genetically modified facilitates investigation of the role these enzymes and oxidative stress play in diseases associated with ethanol consumption. The goals of this application are to: A) maintain and develop unique transgenic knockouts that can be made available to the larger research community for the investigation of the pathogenesis of alcohol abuse and the mechanisms underlying the deleterious effects of alcohol, and B) offer metabolomics and tissue imaging mass spectrometry (IMS) expertise to facilitate investigation of the biochemical consequences of alcohol exposure and pathogenesis. Our overarching aim is to provide valuable transgenic animal models and metabolomics resources to the larger research community that will greatly enhance our understanding of the mechanisms underlying alcohol-induced disease and the pathophysiological effects of acute and chronic alcohol consumption. It is anticipated that our metabolomic platforms will offer state-of-the-art techniques to dissect the molecular mechanisms of alcohol-induced tissue injury. Such knowledge will facilitate the development of more effective treatments of alcohol abuse.

Public Health Relevance

Alcohol-induced toxicity is associated with the deleterious effects of its by-products and oxidative stress resulting from ethanol metabolism. The goals of this application are to: (a) maintain and expand/generate animal models with genetic defects in alcohol metabolizing enzymes and in glutathione synthesizing enzymes that will continue to be available to the research community, and b) offer investigators the opportunity to employ metabolomics analysis and/or tissue mass spectrometry imaging in their research efforts relating to investigation of the mechanisms by which alcohol elicits deleterious pathophysiological effects.

Agency
National Institute of Health (NIH)
Institute
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Type
Resource-Related Research Projects (R24)
Project #
5R24AA022057-09
Application #
9994151
Study Section
National Institute on Alcohol Abuse and Alcoholism Initial Review Group (AA)
Program Officer
Murray, Gary
Project Start
2013-02-01
Project End
2023-08-31
Budget Start
2020-09-01
Budget End
2021-08-31
Support Year
9
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Yale University
Department
Public Health & Prev Medicine
Type
Schools of Medicine
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
Rattray, Nicholas J W; Deziel, Nicole C; Wallach, Joshua D et al. (2018) Beyond genomics: understanding exposotypes through metabolomics. Hum Genomics 12:4
Lian, Gaojian; Gnanaprakasam, Jn Rashida; Wang, Tingting et al. (2018) Glutathione de novo synthesis but not recycling process coordinates with glutamine catabolism to control redox homeostasis and directs murine T cell differentiation. Elife 7:
Yang, Shyh-Ming; Martinez, Natalia J; Yasgar, Adam et al. (2018) Discovery of Orally Bioavailable, Quinoline-Based Aldehyde Dehydrogenase 1A1 (ALDH1A1) Inhibitors with Potent Cellular Activity. J Med Chem 61:4883-4903
Matsumoto, Akiko; Arcaroli, John; Chen, Ying et al. (2017) Aldehyde dehydrogenase 1B1: a novel immunohistological marker for colorectal cancer. Br J Cancer 117:1537-1543
Johnson, Caroline H; Athersuch, Toby J; Collman, Gwen W et al. (2017) Yale school of public health symposium on lifetime exposures and human health: the exposome; summary and future reflections. Hum Genomics 11:32
Mak, Tak W; Grusdat, Melanie; Duncan, Gordon S et al. (2017) Glutathione Primes T Cell Metabolism for Inflammation. Immunity 46:1089-1090
Rattray, Nicholas J W; Charkoftaki, Georgia; Rattray, Zahra et al. (2017) Environmental influences in the etiology of colorectal cancer: the premise of metabolomics. Curr Pharmacol Rep 3:114-125
Chen, Ying; Singh, Surendra; Matsumoto, Akiko et al. (2016) Chronic Glutathione Depletion Confers Protection against Alcohol-induced Steatosis: Implication for Redox Activation of AMP-activated Protein Kinase Pathway. Sci Rep 6:29743
Heit, Claire; Eriksson, Peter; Thompson, David C et al. (2016) Quantification of Neural Ethanol and Acetaldehyde Using Headspace GC-MS. Alcohol Clin Exp Res 40:1825-31
Singh, Surendra; Arcaroli, John J; Orlicky, David J et al. (2016) Aldehyde Dehydrogenase 1B1 as a Modulator of Pancreatic Adenocarcinoma. Pancreas 45:117-22

Showing the most recent 10 out of 27 publications