Class I histocompatibility (MHC) antigens are integral membrane glycoproteins expressed on the surfaces of all mammalian somatic cells. These molecules present foreign antigen to T lymphocytes, thereby regulating cellular immune responses. An area of intense study is the elucidation of the mechanism for the formation of the class I MHC- antigenic peptide-b2-m complex and for transporting it to the cell surface. A second important issue is the fate of cells surface class I MHC molecular after it has lost antigenic peptide and b2-microglobulin light chain. It is important to understand these mechanisms, since intracellular trafficking surely plays an important role in the functions of these molecules during immunosurveillance. For example, Class I MHC antigens acquire the antigenic peptides which they present to T lymphocytes (e.g., tumor and viral antigens) within the cell in which both the MHC antigen and the immunogenic antigen are synthesized. Acquisition of antigenic peptide is required for efficient transport of the class I MHC molecule to the cell surface. A detailed understanding of these mechanisms may lead to the development of better vaccines and of more effective means of treating cancers and autoimmune diseases. The major goal of this research project is to elucidate basic mechanisms in the assembly of the class I MHC molecule with antigenic peptide and b2-m during biosynthesis, the transport of this complex through the cell, and its fate once at the cell surface. To attain this goal we are using specific antibodies which detect assembled and disassembled class I MHC molecules in cell biological and biochemical experiments on normal and mutant cell lines defective in assemble and/or transport of class I MHC molecules. MBRS students will be involved in all phases of this project.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Education Projects (R25)
Project #
1R25GM058903-01
Application #
6107929
Study Section
Project Start
1999-04-01
Project End
2000-03-31
Budget Start
Budget End
Support Year
1
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of California Santa Cruz
Department
Type
DUNS #
City
Santa Cruz
State
CA
Country
United States
Zip Code
95064
Bohr, Tisha; Nelson, Christian R; Giacopazzi, Stefani et al. (2018) Shugoshin Is Essential for Meiotic Prophase Checkpoints in C. elegans. Curr Biol 28:3199-3211.e3
Asojo, Oluwatoyin A; Darwiche, Rabih; Gebremedhin, Selam et al. (2018) Heligmosomoides polygyrus Venom Allergen-like Protein-4 (HpVAL-4) is a sterol binding protein. Int J Parasitol 48:359-369
Bogdanoff, Walter A; Perez, Edmundo I; López, Tomás et al. (2018) Structural Basis for Escape of Human Astrovirus from Antibody Neutralization: Broad Implications for Rational Vaccine Design. J Virol 92:
Alcaide-Gavilán, Maria; Lucena, Rafael; Schubert, Katherine A et al. (2018) Modulation of TORC2 Signaling by a Conserved Lkb1 Signaling Axis in Budding Yeast. Genetics 210:155-170
Volden, Roger; Palmer, Theron; Byrne, Ashley et al. (2018) Improving nanopore read accuracy with the R2C2 method enables the sequencing of highly multiplexed full-length single-cell cDNA. Proc Natl Acad Sci U S A 115:9726-9731
Byrne, Ashley; Beaudin, Anna E; Olsen, Hugh E et al. (2017) Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells. Nat Commun 8:16027
Knutson, Andrew Kek?pa'a; Egelhofer, Thea; Rechtsteiner, Andreas et al. (2017) Germ Granules Prevent Accumulation of Somatic Transcripts in the Adult Caenorhabditis elegans Germline. Genetics 206:163-178
Chakraborty, Indranil; Jimenez, Jorge; Mascharak, P K (2017) CO-Induced apoptotic death of colorectal cancer cells by a luminescent photoCORM grafted on biocompatible carboxymethyl chitosan. Chem Commun (Camb) 53:5519-5522
Duncan, Miles C; Herrera, Natalia G; Johnson, Kevin S et al. (2017) Bacterial internalization is required to trigger NIK-dependent NF-?B activation in response to the bacterial type three secretion system. PLoS One 12:e0171406
Parks, Joseph W; Stone, Michael D (2017) Single-Molecule Studies of Telomeres and Telomerase. Annu Rev Biophys 46:357-377

Showing the most recent 10 out of 120 publications