Understanding the effects of alcohol on brain function is critical for developing better treatments for alcohol-related problems. In this renewal of an ongoing research project, we focus on understanding how alcohol affects the function of a key ion channel expressed by neurons. This channel, the N- methyl-D-aspartate (NMDA) receptor, plays a major role in excitatory glutamatergic transmission and is critically involved in complex processes that underlie learning, memory and other higher cognitive processes. Previous studies carried out during the previous funding period established that alcohol's inhibition of the NMDA receptor could be modulated by discrete domains on the receptor and identified key residues within transmembrane domains of the protein that may define an alcohol site of action. In this application, we propose a series of specific aims designed to establish how these domains control the receptor's sensitivity to alcohol and how expression of ethanol-insensitive receptors in vivo affects alcohol-induced behaviors.
Aim 1 will test the hypothesis that specific amino acids within sub-domains of the NMDA receptor determine the ability of ethanol to inhibit receptor function. Experiments in this aim will use recombinant expression and recording techniques to test how site-directed mutagenesis of residues in key transmembrane domains alters the effects of alcohol on channel function.
Aim 2 will test the hypothesis that alcohol inhibition of NMDA receptors is also modified by expression of the novel NR3 subunit and through phosphorylation of key residues on the intracellular domain of the NR1 and NR2 subunits. Experiments in this aim will utilize expression and recording techniques coupled with the use of genetically modified animals.
Aim 3 will test the hypothesis that the behavioral responses to alcohol can be modified by expression of mutant NMDA receptors that show altered ethanol sensitivity. Experiments in this aim will use a novel NMDA knock-in mouse that is currently under development and viral over-expression techniques to alter NMDA subunit expression in discrete brain areas. Overall, results from these studies are expected to lead to a more complete understanding of the role of NMDA receptors in mediating alcohol's action of the brain.
Processes that affect an individual's sensitivity to the intoxicating effects of alcohol are an important predictor of future alcohol problems. Research to be carried out in this proposal will determine the factors that influence the alcohol sensitivity of a brain ion channel that is critically involved in regulating brain activity.
Showing the most recent 10 out of 40 publications