Human immunodeficiency virus (HIV-1) is the etiologic agent of acquired immunodeficiency syndromes (AIDS). The HIV-1 envelope glycoproteins, gp120 and gp41, play critical roles during virus entry into the target cell, mediating binding to the CD4 receptor and the fusion of viral and cellular membranes. The location of the envelope glycoproteins outside of the viral membrane renders these molecules important targets for therapeutic and vaccine development, since they are the only viral components accessible to antibodies. Recent estimates of the short half-life of HIV-1-producing cells suggest the probable importance of viral cytopathic effect, which is mediated by the viral envelope glycoproteins, to CD4 depletion in vivo. The goal of the proposed work is to understand the structure-function relationships of the HIV-1 envelope glycoproteins important for membrane fusion, a process that contributes to virus entry and cytopathic effect.
The specific aims of the proposal are: 1) to understand the structural requirements in the CD4 receptor and the HIV-1 envelope glycoproteins for triggering fusion-related conformational changes; 2) to characterize the functional interactions involving the major gp120 variable loops in the fusion process; and 3) to define the molecular determinants of the acute cytopathic effect of HIV-1 (ie., single cell lysis).

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
5R37AI024755-13
Application #
2886549
Study Section
AIDS and Related Research Study Section 1 (ARRA)
Program Officer
Plaeger, Susan F
Project Start
1987-04-01
Project End
2001-03-31
Budget Start
1999-04-01
Budget End
2000-03-31
Support Year
13
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
149617367
City
Boston
State
MA
Country
United States
Zip Code
02215
Dong, Yuanchen; Chen, Shuobing; Zhang, Shijian et al. (2018) Folding DNA into a Lipid-Conjugated Nanobarrel for Controlled Reconstitution of Membrane Proteins. Angew Chem Int Ed Engl 57:2072-2076
Herschhorn, Alon; Sodroski, Joseph (2017) An entry-competent intermediate state of the HIV-1 envelope glycoproteins. Receptors Clin Investig 4:
Herschhorn, Alon; Gu, Christopher; Moraca, Francesca et al. (2017) The ?20-?21 of gp120 is a regulatory switch for HIV-1 Env conformational transitions. Nat Commun 8:1049
Pacheco, Beatriz; Alsahafi, Nirmin; Debbeche, Olfa et al. (2017) Residues in the gp41 Ectodomain Regulate HIV-1 Envelope Glycoprotein Conformational Transitions Induced by gp120-Directed Inhibitors. J Virol 91:
Madani, Navid; Princiotto, Amy M; Zhao, Connie et al. (2017) Activation and Inactivation of Primary Human Immunodeficiency Virus Envelope Glycoprotein Trimers by CD4-Mimetic Compounds. J Virol 91:
Go, Eden P; Ding, Haitao; Zhang, Shijian et al. (2017) Glycosylation Benchmark Profile for HIV-1 Envelope Glycoprotein Production Based on Eleven Env Trimers. J Virol 91:
Johnson, Jacklyn; Zhai, Yinjie; Salimi, Hamid et al. (2017) Induction of a Tier-1-Like Phenotype in Diverse Tier-2 Isolates by Agents That Guide HIV-1 Env to Perturbation-Sensitive, Nonnative States. J Virol 91:
Herschhorn, Alon; Ma, Xiaochu; Gu, Christopher et al. (2016) Release of gp120 Restraints Leads to an Entry-Competent Intermediate State of the HIV-1 Envelope Glycoproteins. MBio 7:
Madani, Navid; Princiotto, Amy M; Easterhoff, David et al. (2016) Antibodies Elicited by Multiple Envelope Glycoprotein Immunogens in Primates Neutralize Primary Human Immunodeficiency Viruses (HIV-1) Sensitized by CD4-Mimetic Compounds. J Virol 90:5031-5046
Richard, Jonathan; Veillette, Maxime; Brassard, Nathalie et al. (2015) CD4 mimetics sensitize HIV-1-infected cells to ADCC. Proc Natl Acad Sci U S A 112:E2687-94

Showing the most recent 10 out of 147 publications