In the next 5-year phase of this R37 grant, we will continue our investigations in 2 of the three aims originally proposed.
The third Aim, is a new aim and outgrowth of the current trends In HIV research of Investigating the role of host factors in specific viral functions.
In Aim 1, we will continue the wori< on the RT determinants of dNTP selection and expand into determinants of mispair extension fidelity. We will further expand from our novel observation that the K65 residue plays a critical role in forcing the insertion of incorrect basepairs due to the interaction between the lysine side chain and the y phosphate of incoming dNTP. We will use two novel ways of improving the fidelity of HIV-1 RT variants in which we will either use dNTP analogs that do not have a negative charge on the y phosphate or remove the positive charge on the amino acid side chain by using unnatural amino acid residues. We believe that these two methods afford powerful means of testing the pivotal importance of this interaction to HIV-1 RT accuracy. We have also made a novel observation that certain amino acid substitutions and certain sequences in template-primer dnve the RT molecule to an unproductive, -2 position with respect to the templating base position. We will further explore and delineate the various conditions that facilitate a higher fidelity by displacing RT.
In Aim 2, we will continue our previous work on RT-IN complexes by co-crystallizing HIV-1 RT-IN complexes in collaboration with Dr. Steve Almo. When the structural information becomes available, we can carry out site-directed mutagenesis to disrupt residues in the interaction interface and carry out genetic protein-protein interaction assays and virological assays to determine the significance of the interaction.
In Aim 3, we will Investigate the role of host factors in HIV reverse transcription. We will examine the genes Implicated in reverse trancription by shRNA screens by Konig et al. The specific role of selected genes in reverse transcription will be confirmed by eliminating possible effects on entry and/or uncoating. First, we will develop an interactome of each hit via co-1.P. from both infected and uninfected cells to understand the pathways involved. Second, we will silence other members of the complexes thus identified for role in reverse transcription. Third, we will test whether the silencing of the 'hit's or their interacting partners will affect only HIV or also the related lenti- and retroviruses including SIVcpz, SIVmac, HIV-2, MuLV and RSV - to understand the wider significance of the proteins thus identified to retroviruses.

Public Health Relevance

We believe that the proposed work can lead to the development of analogs of dNTP that can either enhance fidelity or push the error rate above the error catastrophe - both of which affect virus fitness and thus should be potent means of virus suppression. Delineation of interaction between RT and IN will allow the development of reagents to block this essential interaction. Delineation of host factors specifically involved in reverse transcription will help evolve a new class of drugs that targeting host proteins.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
6R37AI030861-21
Application #
9132463
Study Section
Special Emphasis Panel (NSS)
Program Officer
Fitzgibbon, Joseph E
Project Start
1991-09-01
Project End
2017-01-31
Budget Start
2015-09-01
Budget End
2016-01-31
Support Year
21
Fiscal Year
2015
Total Cost
$190,148
Indirect Cost
$76,287
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
079783367
City
Bronx
State
NY
Country
United States
Zip Code
10461
Kuniholm, Mark H; Liang, Hua; Anastos, Kathryn et al. (2017) Association of a 3' untranslated region polymorphism in proprotein convertase subtilisin/kexin type 9 with HIV viral load and CD4+ levels in HIV/hepatitis C virus coinfected women. AIDS 31:2483-2492
Kuniholm, Mark H; Liang, Hua; Anastos, Kathryn et al. (2017) Association of a 3' Untranslated Region Polymorphism in PCSK9 with HIV Viral Load and CD4+ Levels in HIV/Hepatitis C Virus Co-Infected Women. AIDS :
Ruiz, Arthur P; Prasad, Vinayaka R (2016) Measuring the Uptake and Transactivation Function of HIV-1 Tat Protein in a Trans-cellular Cocultivation Setup. Methods Mol Biol 1354:353-66
Duclair, Sonald; Gautam, Archana; Ellington, Andrew et al. (2015) High-affinity RNA Aptamers Against the HIV-1 Protease Inhibit Both In Vitro Protease Activity and Late Events of Viral Replication. Mol Ther Nucleic Acids 4:e228
Neogi, Ujjwal; Rao, Shwetha D; Bontell, Irene et al. (2014) Novel tetra-peptide insertion in Gag-p6 ALIX-binding motif in HIV-1 subtype C associated with protease inhibitor failure in Indian patients. AIDS 28:2319-22
Garforth, Scott J; Lwatula, Chisanga; Prasad, Vinayaka R (2014) The lysine 65 residue in HIV-1 reverse transcriptase function and in nucleoside analog drug resistance. Viruses 6:4080-94
Hanna, Luke Elizabeth; Neogi, Ujjwal; Ranga, Udaykumar et al. (2014) Phylogenetic characterization of six full-length HIV-1 subtype C molecular clones from three patients: identification of rare subtype C strains containing two NF-?B motifs in the long terminal repeat. AIDS Res Hum Retroviruses 30:586-91
Rao, Vasudev R; Neogi, Ujjwal; Eugenin, Eliseo et al. (2014) The gp120 protein is a second determinant of decreased neurovirulence of Indian HIV-1C isolates compared to southern African HIV-1C isolates. PLoS One 9:e107074
Prasad, Vinayaka R; Bukrinsky, Michael I (2014) New clues to understanding HIV nonprogressors: low cholesterol blocks HIV trans infection. MBio 5:e01396-14
Mathew, Sheeba; Nguyen, Minh; Wu, Xuhong et al. (2013) INI1/hSNF5-interaction defective HIV-1 IN mutants exhibit impaired particle morphology, reverse transcription and integration in vivo. Retrovirology 10:66

Showing the most recent 10 out of 18 publications